首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
The small laser pulse gain method, based on photochemical Br and I lasers, is used to probe 2P3/2 and 2P1/2 states of iodine and bromine atoms in the reactions F + Br2 → BrF + Br (I), I(2P1/2) + Br2 → IBr + Br (II), and Br + IBr → Br2 + I (III). The results obtained are capable of formulating a conservation rule for the spin-orbit excited state.  相似文献   

2.
The reactions between triphenylphosphine sulfide (Ph3PS) and ICl in CCl4 and IBr in CH2Cl2 in 1 : 1 molar ratio give the solid adducts Ph3PS · ICl ( I ) and Ph3PS · IBr ( II ) whose structures have been solved by X-ray diffraction. Compounds I and II consist of discrete molecule units and feature the S–I–Cl or S–I–Br linear group. The S–I bond distances in I , II (2.641(1), 2.665(1) Å respectively) and in compound 2 Ph3PS · 3 I2 ( III ) (2.729(2) Å) are correlable to the net increase in the I–X (X = Cl, Br, I) bond distance. The structural features of I , II and III are in accordance with 31P CP–MAS NMR, FT-Raman and FT-IR spectral data, and elucidate the nature of the donor (Ph3PS)-acceptor (ICl, IBr, I2) interaction.  相似文献   

3.
The kinetics of the title reactions have been studied using the discharge-flow mass spectrometic method at 296 K and 1 torr of helium. The rate constant obtained for the forward reaction Br+IBr→I+Br2 (1), using three different experimental approaches (kinetics of Br consumption in excess of IBr, IBr consumption in excess of Br, and I formation), is: k1=(2.7±0.4)×10−11 cm3 molecule−1s−1. The rate constant of the reverse reaction: I+Br2→Br+IBr (−1) has been obtained from the Br2 consumption rate (with an excess of I atoms) and the IBr formation rate: k−1=(1.65±0.2)×10−13 cm3molecule−1s−1. The equilibrium constant for the reactions (1,−1), resulting from these direct determinations of k1 and k−1 and, also, from the measurements of the equilibrium concentrations of Br, IBr, I, and Br2, is: K1=k1/k−1=161.2±19.7. These data have been used to determine the enthalpy of reaction (1), ΔH298°=−(3.6±0.1) kcal mol−1 and the heat of formation of the IBr molecule, ΔHf,298°(IBr)=(9.8±0.1) kcal mol−1. © 1998 John Wiley & sons, Inc. Int J Chem Kinet 30: 933–940, 1998  相似文献   

4.
A flashlamp-pumped tunable dye laser has been used to study the photochemical production of Br* (42P ) atoms from Br2 and IBr exc  相似文献   

5.
Red crystals of [NMeEt3]2n[TeBr6(Se2Br2)3]n ( 1 ) were isolated when selenium and bromine (1:1) were allowed to react in acetonitrile solution in the presence of tellurium(IV) bromide and methyltriethylammonium bromide (1:2). The salt 1 crystallizes in the monoclinic space group C2/c with the cell dimensions a = 27.676(6) Å, b = 9.665(2) Å, c = 18.796(4) Å and ß = 124.96(3)° (120 K). The [TeBr6(Se2Br2)3]2— anions contain nearly regular octahedral [TeBr6]2— ions which are incorporated into a polymeric chain by bonding contacts between 3 facial bromo ligands and 3 Se2Br2 molecules, one of which is situated on the twofold symmetry axis. The distances between the μBr ligands and the SeI atoms of the Se2Br2 molecules are observed in the range 3.308(2) — 3.408(2) Å and can tentatively be interpreted as donor‐acceptor bonds with μBr as donors and Se2Br2 as acceptors. The TeIV—Br distances are in the range 2.669(1) — 2.687(1) Å. The bond lengths in the connecting Se2Br2 molecules are: SeI—SeI = 2.267(2) and 2.281(2) Å, SeI—Br = 2.340(1), 2.353(1) and 2.337(1) Å.  相似文献   

6.
A series of five ternary octanuclear iodine-bromine-chlorine interhalides, [I2Br2Cl4]2− ( 1 ), [I3BrCl4]2− ( 2 ), [I4Br2Cl2]2− ( 3 ), [I2Br4Cl2]2− ( 4 ) and [I3Br3Cl2]2− ( 5 ), have been rationally constructed in two steps. Firstly, addition of a dihalogen (ICl or IBr) to the triaminocyclopropenium chloride salt [C3(NEt2)3]Cl forms the corresponding trihalide salt with [ICl2] or [BrICl] anions, respectively. Secondly, addition of a half-equivalent of a second dihalogen, followed by crystallization at low temperature, gives the corresponding octahalide: addition of Br2 and IBr to [ICl2] gives 1 and 2 , respectively, whereas addition of I2, Br2 and IBr to [BrICl] gives 3 , 4 and 5 , respectively. The five octahalides were characterized by X-ray crystallography and far–IR spectroscopy.  相似文献   

7.
A series of octanuclear iodine-bromine interhalides [InBr8−n]2− (n=0, 2, 3, 4) were prepared systematically in two steps. Firstly, addition of a dihalogen (Br2 or IBr) to the triaminocyclopropenium bromide salt [C3(NEt2)3]Br forms the corresponding trihalide salt with Br3 or IBr2 anions, respectively. Secondly, addition to Br3 of half an equivalent of Br2 gives the octabromine polyhalide [Br8]2−, whereas addition to IBr2 of half an equivalent of Br2, IBr or I2 gives the corresponding interhalides: [I2Br6]2−, [I3Br5]2−, and [I4Br4]2−, respectively. The four octahalides were characterized by X-ray crystallography, computational studies, Raman and Far-IR spectroscopies, as well as by TGA and melting point. All of the salts were found to be ionic liquids.  相似文献   

8.
Curve crossing in two excited states of IBr was studied by means of photodissociation with a pulse dye laser. The ratios of the formed ground state Br(2P32 and excited Br(2P12) were measured at various wavelengths. They are compared with ratios calculated with the Landau-Zener formula, using parameters given by Child. The agreement between the measurements and the calculations is very good.  相似文献   

9.
The fast bimolecular reaction HgBr + Br2 → HgBr2 + Br is shown to be responsible for the observed rapid and efficient regeneration of HgBr2 in cyclic operation of the repetitively pulsed HgBr photodissociation laser. The rate constant for this reaction has been measured to be (7.7 ± 0.6) × 10?11 cm3 molecule?1 at 415 K.  相似文献   

10.
The reaction of W6Br12 with AgBr in evacuated silica tubes (temperature gradient 925 K/915 K) yielded brownish black octahedra of Ag[W6Br14] ( I ) and yellowish green platelets of Ag2[W6Br14] ( II ) both in the low temperature zone. ( I ) crystallizes cubically (Pn3 (no. 201); a = 13.355 Å, Z = 4) and ( II ) monoclinically (P21/c (no. 14); a = 9.384 Å, b = 15.383 Å, c = 9.522 Å, β = 117.34°, Z = 2). Both crystal structures contain isolated cluster anions, namely [(W6Bri8)Bra6]1– and [(W6Bri8)Bra6])]2–, respectively, with the mean distances and angles: ( I ) d(W–W) = 2.648 Å, d(W–Bri) = 2.617 Å, d(W–Bra) = 2.575 Å, d(Bri…Bri) = 3.700 Å, d(Bri…Bra) = 3.692 Å, ∠W–Bri–W = 60.78°. ( II ) d(W–W) = 2.633 Å, d(W–Bri) = 2.624 Å, d(W–Bra) = 2.613 Å, d(Bri…Bri) = 3.710 Å, d(Bri…Bra) = 3.707 Å, ∠W–Bri–W = 60.23°. The Ag+ cations are trigonal antiprismatically coordinated in ( I ) with d(Ag–Br) = 2.855 Å, but distorted trigonally planar in ( II ) with d(Ag–Br) = 2.588–2.672 Å. The structural details of hitherto known compounds with [W6Br14] anions will be discussed.  相似文献   

11.
Preparation and Properties of Tetragonal α-Di(phthalocyaninato(1?))praseodymium(III)-polyhalides; Crystal Structure of α-[Pr(Pc?)2]Br1.5 Brown red di(phthalocyaninato(1?))-praseodym(III)-polyhalides [Pr(Pc?)2]Xy (X = Br, I) of variable composition (1 ≤ y ≤ 2.5) are formed by (electro)chemical oxidation of [Pr(Pc2?)2]?. The thermical decomposition of these polyhalides at 250°C yields partially oxidized, green α-[PrPc?Pc2?]. Due to strong spin–spin coupling of the phthalocyanin-π-radicals only PrIII contributes to the magnetic moment of ca. 3.0 B.M. for all complexes. Green metallic prisms of [Pr(Pc?)2]Br1.5 crystallize in the tetragonal α-modification: space group P4/nnc with a = 19.634(5) Å, c = 6.485(2) Å; Z = 2. In the sandwich complex PrIII is eightfold coordinated by the isoindoline N-atoms of the two staggered (41°), nearly planar Pc?- ligands. The quasi-onedimensional character of the structure along [001] is due to the infinite columns of Pc? ligands. The superperiod along [001] is a consequence of the distribution of the Pr atoms onto two incompletely filled crystallographic positions at a distance of c/2 and the disordered chains of the bromine atoms extending in the same direction. Powder diffractograms of Pr(Pc )2Br2, [Pr(Pc?)2]I2 und [PrPc Pc2?] confirm the tetragonal α-modification of these complexes, too. The content of tribromide correlates with the population of the Pr(2)-site. In the UV-VIS-NTR absorption spectrum of a thin film of Pr(Pc )2Br, the intense bands at 13.9 and 19.5 kK are assigned to the B and Q transition, respectively. The D band at 9. kK is characteristic for isolated dimeric Pc?-π-radicals. Due to increasing electron delocalisation as a result of the growing columns the D band is shifted to lower energy appearing successively at 6.05 and 3.3 kK. The mir and resonance Raman (RR) spectra of α-[Pr(Pr?)2]Xy, (X = Br, I) show the well known diagnostic bands for Pc?-π-radicals. Thc RR spectrum of the polyiodide is dominated by the overtone progression of the totally symmetric (I-I) stretching vibration of the triiodide at 108cm?1. The FT-Raman spectra are also marked by the totally symmetric stretching vibration of the polyhalides (Br3 : 145cm 1; 13?:105cm?1; I5? 151 cm?1).  相似文献   

12.
A new tandem quadrupole photodissociation mass spectrometer was used to measure photodissociation cross sections for the reactions, CH3Cl+ → CH3+ + Cl and CH3Br+ → CH3+ + Br in the gas phase using wavelength-selected light. The results on CH3Cl+ are compared with the earlier work of Dunbar. For both reactions we are able to observe photodissociations occurring with small cross sections (≈ 2 × 10?20 cm2) in the visible region near the thermochemical thresholds.  相似文献   

13.
The brown crystals of [NEt4]2[Se3Br8(Se2Br2)] ( 1 ) were obtained when selenium and bromine reacted in the solution of acetonitrile in the presence of tetraethylammonium bromide. The crystal structure of 1 has been determined by the X‐ray methods and refined to R = 0.0308 for 10433 reflections. The crystals are monoclinic, space group P21 with Z = 2 and a = 12.0393(3) Å, b = 11.8746(3) Å, c = 13.1946(3) Å, β = 96.561(1)° (123 K). In the solid state structure the anion of 1 is built up of Se3Br8 unit which consists of a triangular arrangement of three planar SeBr4 units sharing a common edge through two μ3‐bridging Br atoms, and one Se2Br2 molecule which is linked to one of μ3‐bridging Br atoms. The three SeII atoms form a triangle which is almost perpendicular to the planes given by three SeBr4 moieties. The contact between the μ3Br and the SeI atom of the Se2Br2 molecule is 3.1711(8) Å and can be interpreted as a bond of the donor‐acceptor type with the μ3Br as donor and the Se2Br2 molecule as acceptor. The terminal SeII‐Br and μ3Br‐SeII bond lengths are in the ranges 2.3537(7)–2.4737(7) Å and 2.7628(7)–3.1701(7) Å, respectively. The bond lengths in coordinated Se2Br2 molecule are: SeI‐SeI = 2.2636(9) Å, SeI‐Br = 2.3387(11) and 2.3936(8) Å.  相似文献   

14.
Preparation of the Nonahalogenodiplatinates(IV), [Pt2X9]?, X ? Cl, Br Spectroscopic Characterization, Normal Coordinate Analysis, and Crystal Structure of (PPN)[Pt2Br9] On heating the tetrabutylammonium salts (TBA)2[PtX6], with trifluoroacetic acid the nonahalogenodiplatinates(IV) (TBA)[Pt2X9], with X ? Cl, Br are formed. The X-ray structure determination on (PPN)[Pt2Br9] (orthorhombic, space group Pca2, Z = 4) shows for the anions pairs of face-sharing octahedra with nearly D3h symmetry. The mean terminal and bridging Pt? Br bond lengths are determined to be 2.42 and 2.52 Å, respectively. The electrostatic interaction of the Pt atoms results in the Pt? Pt distance of 3.23 Å and an elongation as it has been forecasted by the MO scheme for d6 systems. Using the structural data a normal coordinate analysis based on a general valence force field for [Pt2Br9]? has been performed, revealing a good agreement of the calculated frequencies with the bands observed in the IR and Raman spectra. The stronger bonding of the terminal as compared to the bridging ligands is shown by the valence force constants, fa(Br1) = 1,55 > fd(Brb) = 0,93 mdyn/ Å.  相似文献   

15.
The Red crystals of [PPh4]2[Se2Br6(Se2Br2)2] ( 1 ) were obtained when selenium and bromine reacted in the solution of acetonitrile in the presence of tetraphenylphosphonium bromide. The crystal structure of 1 has been determined by X‐ray diffraction and refined to R = 0.0201 for 4024 reflections. The crystals are triclinic, space group with Z = 2 and a = 11.2757(4) Å, b = 12.3347(5) Å, c = 12.4948(5) Å, α = 113.152(4)°, β = 114.745(4)°, γ = 91.208(3)° (120(2) K). In the solid state the anion of 1 is built up of the Se2Br6 core and two Se2Br2 molecules each of which is linked to one of the trans‐positioned terminal Brt atoms of the Se2Br6 core. The central Se2Br6 part consists of a nearly planar arrangement of two planar SeBr4 units sharing a common edge through two μ2‐bridging Br atoms. The contact between the Brt and the SeI atom of the Se2Br2 molecule is 3.0872(5) Å and can be interpreted as a bond of the donor‐acceptor type with the Brt as donor and the Se2Br2 molecule as acceptor. The terminal SeII–Br and μ2Br–SeII bond lengths are 2.3654(4), 2.6699(5) Å and 2.5482(5), 3.0265(5) Å, respectively. The bond lengths in the coordinated Se2Br2 molecule are: SeI–SeI = 2.2686(5) Å, SeI–Br = 2.3779(5) and 2.3810(5) Å.  相似文献   

16.
Though massive efforts have been devoted to exploring Br-based batteries, the highly soluble Br2/Br3 species causing rigorous “shuttle effect”, leads to severe self-discharge and low Coulombic efficiency. Conventionally, quaternary ammonium salts such as methyl ethyl morpholinium bromide (MEMBr) and tetrapropylammonium bromide (TPABr) are used to fix Br2 and Br3, but they occupy the mass and volume of battery without capacity contribution. Here, we report an all-active solid interhalogen compound, IBr, as a cathode to address the above challenges, in which the oxidized Br0 is fixed by iodine (I), thoroughly eliminating cross-diffusing Br2/Br3 species during the whole charging and discharging process. The Zn||IBr battery delivers remarkably high energy density of 385.8 Wh kg−1, which is higher than those of I2, MEMBr3, and TPABr3 cathodes. Our work provides new approaches to achieve active solid interhalogen chemistry for high-energy electrochemical energy storage devices.  相似文献   

17.
The crystal packing of the title compound, C8H11BrN+·Br?, involves three types of secondary interaction: a classical N—H?Br? hydrogen bond, a `weak' but short C—H?Br? interaction (normalized H?Br distance of 2.66 Å) and a cation–anion Br?Br contact of 3.6331 (4) Å. The hydrogen bonds connect two cations and two anions to form rings of graph set R(14). The Br?Br contacts link these rings to form layers parallel to the bc plane.  相似文献   

18.
Preparation of Fluorine Containing Hexahalorhenates(IV) By oxidative ligand exchange on hexahalorhenates(IV) with BrF3, KBrF4, IF5 and Br2 or by substitution reactions in organic solvents as well as by solid state exchange processes 20 fluorine containing mixed ligand complexes are prepared for the first time: cis-[ReFBrI4]2?, fac-[ReFBr2I3]2?, mer-[ReFBr3I2]2?, trans-[ReFBr4I]2?, [ReFBr5]2?, trans-[ReFCl4I]2?, trans-[ReFCl4Br]2?, [ReFCl5]2?, cis-[ReF2I4]2?, fac-[ReF2BrI3]2?, all-cis-[ReF2Br2I2]2?, cis-[ReF2BrI2]2?, mer-[ReF2Br3I]2?, cis-[ReF2Br4]2?, cis-[ReF2Cl4]2?, fac-[ReF3I3]2?, fac-[ReF3BrI2]2?, fac-[ReF3Br2I]2?, fac-[ReF3Br3]2? and fac-[ReF3Cl3]2?. The isolation of the pure complexes has been achieved by ion exchange chromatography on DEAE-cellulose. They are characterized by stereospecific exchange reactions in solution and by elementary analyses.  相似文献   

19.
A single crystal of Br3+AsF6? was isolated from a sample of BrF2+AsF6? which had been stored for 20 years. It was characterized by x-ray diffraction and Raman spectroscopy. It is shown that Br3+AsF6? (triclinic, a = 7.644(7) Å, b = 5.641(6) Å, c = 9.810(9) Å, α = 99.16(8)°, β = 86.61(6)°, γ = 100.11(7)°, space group P1 R(F) = 0.0608) is isomorphous with I3+AsF6?. The structure consists of discrete Br3+ and AsF6? ions with some cation-anion interaction causing distortion of the AsF6? octahedron. The Br3+ cation is symmetric with a bond distance of 2.270(5) Å and a bond angle of 102.5(2)°. The three fundamental vibrations of Br3+ were observed at 297 (ν3), 293 (ν1), and 124 cm?12). The Raman spectra of Cl3+AsF6? and I3+AsF6? were reinvestigated and ν3(B1) of I3+ was reassigned. General valence force fields are given for the series Cl3+, Br3+, and I3+. Reactions of excess Br2 with either BrF2+AsF6? or O2+AsF6? produce mixtures of Br3+AsF6? and Br5+AsF6?. Based on its Raman spectra, the Br5+ cation possesses a planar, centrosymmetric structure of C2h symmetry with three semi-ionically bound, collinear, central Br atoms and two more covalently, perpendicularly bound, terminal Br atoms.  相似文献   

20.
Deactivation rates of spin-orbit excited Br*(2P12) atoms by halogens I2, Br2, and Cl2 and interhalogens IBr, ICl and BrCl have been measured by laser-excited, time-resolved infrared emission techniques. The results are effectively explained in terms of a collision complex formation model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号