首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mechanical properties of nanocrystalline copper under thermal load   总被引:1,自引:0,他引:1  
The material properties of nanocrystallines are known to generally have a strong dependence on their nanoscale morphology, such as the grain size. The Hall-Petch effect states that the mechanical strength of nanocrystalline materials can vary substantially for a wide range of grain sizes; this is attributed to the competition between intergranular and intragranular deformations. We employed classical molecular dynamics simulations to investigate the morphology-dependent mechanical properties of nanocrystalline copper. The degradation of material properties under thermal load was investigated during fast strain rate deformation, particularly for the grain size. Our simulation results showed that the thermal load on the nanocrystalline materials alters the grain-size behavior of the mechanical properties.  相似文献   

2.
It is common for fibrous porous materials to be used in high temperature applications such as automotive and gas turbine exhaust silencers. Understanding the effect of temperature on the acoustic properties of these materials is crucial when attempting to predict silencer performance. This requires knowledge of the bulk acoustic properties of the porous materials and so this article aims to quantify the effect of temperature on the bulk acoustic properties of three fibrous materials: rock wool, basalt wool and an E-glass fibre. Measurements are undertaken here using a standard impedance tube that has been modified to accommodate temperatures of up to 500 °C. It is shown that measured data for the bulk acoustic properties may be collapsed using a standard Delany and Bazley curve fitting methodology provided one modifies the properties of the material flow resistivity and air to account for a change in temperature. Moreover, by using a previously proposed power law describing the dependence of the flow resistivity with temperature, one may successfully collapse data measured at every temperature and obtain the Delany and Bazley coefficients in the usual way. Accordingly, to predict the bulk acoustic properties of a fibrous material at elevated temperatures it is necessary only to measure these properties at room temperature, and then to apply the appropriate temperature corrections to the properties of the material flow resistivity and air when using the Delany and Bazley formulae.  相似文献   

3.
Clusters as new materials   总被引:1,自引:0,他引:1  
W. Eberhardt   《Surface science》2002,500(1-3):242-270
Over the past two decades methods have been developed to produce clusters with an exactly determined number of atoms. Due to their finite size these small particles have totally different structures and `materials properties' than their bulk crystalline counterparts. Even more, these properties sometimes change drastically whenever a single atom is added to or removed from the cluster. This opens the pathway for a whole new world of tailor made materials in the future. In this article we describe the present state of the knowledge of the properties of clusters of atoms which in their bulk form conventional metals or semiconductors. The questions addressed include the development of the electronic structure as a function of cluster size and for example what remains of the `metallic' properties of the bulk solid in these very small clusters. Technological advances are expected using clusters on a specific support material in the areas of catalysis, magnetic storage media or electronic materials, and even solids assembled totally from clusters. Examples from each of these fields will be discussed in the context of this article.  相似文献   

4.
Yong-Bo Guo  Tao Xu 《哲学杂志》2013,93(24):3064-3083
Internal stress in polycrystalline materials is an intrinsic attribute of the microstructure that affects a broad range of material properties. It is usually acquired through experiment in conjunction with continuum mechanics modelling, but its determination at nanometre and submicron scales is extremely difficult. Here, we report a bottom-up approach using atomistic calculation. We obtain the internal stress in polycrystalline copper with nanosized grains by first computing the stress associated with each atom and then sorting the stress into those associated with different self-equilibrating length scales, i.e. sample scale and grain cell, which gives type I, II and III residual stresses, respectively. The result shows highly non-uniform internal stress distribution; the internal stress depends sensitively on grain size and the grain shape anisotropy. Statistical distributions of the internal stresses, along with the means and variance, are calculated as a function of the mean grain size and temperature. The implementation of this work in assisting the interpretation of experimental results and predicting material properties is discussed.  相似文献   

5.
This work reports on an application of the state vector (Stroh) formalism and Peano series expansion to solve the problem of sound propagation in a material with continuous pore stratification. An alternative Biot formulation is used to link the equivalent velocity in the oscillatory flow in the material pores with the acoustic pressure gradient. In this formulation, the complex dynamic density and bulk modulus are predicted using the equivalent fluid flow model developed by Horoshenkov and Swift [J. Acoust. Soc. Am. 110(5), 2371-2378 (2001)] under the rigid frame approximation. This model is validated against experimental data obtained for a 140 mm thick material specimen with continuous pore size stratification and relatively constant porosity. This material has been produced from polyurethane binder solution placed in a container with a vented top and sealed bottom to achieve a gradient in the reaction time which caused a pore size stratification to develop as a function of depth [Mahasaranon et al., J. Appl. Phys. 111, 084901 (2012)]. It is shown that the acoustical properties of this class of materials can be accurately predicted with the adopted theoretical model.  相似文献   

6.
The particle size distribution of pharmaceutically active materials and other fine chemicals determines the performance of the final product to a large extent. Often milling of these particles is necessary. It is not possible to determine the milling conditions solely on the basis of the particle size distribution of the starting material, because the (mechanical) properties of the material also determine the desired milling conditions. It is often not possible to optimize milling conditions experimentally because the amount of material available is frequently highly limited. A theoretical approach towards predicting the best milling conditions is needed. The purpose of this study was to develop a method to predict the desired milling conditions given a specific (organic) solid material. The selection function and the breakage distribution function are usually the starting points in modeling the milling process. The selection function is the parameter that includes the material and mill properties. Dimensional analysis made it possible to correlate the selection function with material properties. A set of theories available in the literature enable prediction of the material properties. For different compounds (lactose, paracetamol, a steroidal compound, and two heterocyclic compounds) the selection functions were calculated. The calculations predict differences: lactose reduces slowly in size, while one of the heterocyclic compounds shows the most intense fracture.  相似文献   

7.
林长鹏  刘新健  饶中浩 《物理学报》2015,64(8):83601-083601
采用分子动力学方法模拟了纳米金属铝在粒径为0.8-3.2 nm 时的熔点、密度和声子热导率的变化, 研究了粒径为1.6 nm的铝纳米颗粒的密度、比热和声子热导率随温度的变化. 采用原子嵌入势较好地模拟了纳米金属铝的热物性及相变行为, 根据能量-温度曲线和比热容-温度曲线对铝纳米颗粒的相变温度进行了研究, 并利用表面能理论、尺寸效应理论对铝纳米颗粒熔点的变化进行了分析. 随着纳米粒径的不断增大, 铝纳米颗粒的熔点呈递增状态, 当粒径在2.2-3.2 nm时, 熔点的增幅减缓, 但仍处于递增趋势. 随着纳米粒径的增大, 铝纳米颗粒的密度呈单调递减, 热导率则呈线性单调递增, 且热导率的变化情况符合声子理论. 随着温度的升高, 粒径为1.6 nm的铝纳米颗粒的密度、热导率均减小. 该模拟从微观原子角度对纳米材料的热物性进行了研究, 对设计基于铝纳米颗粒的相变材料具有指导意义.  相似文献   

8.
The commercial aluminium alloy 5083 was processed via cryomilling to produce nanocrystalline (NC) powders with an average grain size of ~25–50?nm. The powders were subsequently degassed at 723 K (450°C), pre-heated and immediately quasi-isostatic (QI)-forged to produce a thermally stable bulk ultrafine grain (UFG) material having average grain size values ranging from 190 to 350?nm, depending on the processing conditions used. In this paper, the tensile properties and fracture behaviour of the bulk UFG material are presented and compared with the tensile properties of its conventionally processed counterpart. The specific influence of preheat temperature on strength and ductility of the alloy is briefly discussed. Three different pre-heat temperatures of 523, 623 and 723?K (250, 350 and 450°C) were chosen and used with the primary objective of controlling grain growth during forging. The influence of preheat temperature on tensile deformation and final fracture behaviour is highlighted. The macroscopic fracture modes of the bulk nanostructured material (BNM) prepared following three pre-heat temperatures are investigated. The microscopic mechanisms controlling tensile deformation and final fracture behaviour are discussed with regards to the intrinsic microstructural effects in the UFG alloy, nature of loading, and the kinetics and mechanisms of deformation.  相似文献   

9.
宋晓艳  高金萍  张久兴 《物理学报》2005,54(3):1313-1319
以往关于纳米材料热力学的研究,绝大多数以界面的热力学函数表征整体纳米材料的热力学性质,这种近似处理,对于尺寸超过几十纳米的较粗纳米材料,在相变热力学中对特征转变温度和临界尺寸等重要参量的预测,将导致很大误差. 应用“界面膨胀模型”和普适状态方程,研究了纳米晶界的热力学特性,进一步发展了纳米晶整体材料热力学函数的计算模型,给出了单相纳米多晶体的焓、熵和吉布斯自由能随界面过剩体积、温度,以及晶粒尺寸发生变化的明确表达式. 以Co纳米晶为例,分析了界面与整体纳米多晶体热力学函数的差异,确定了相变温度与晶粒尺寸的依赖关系,以及一定温度下可能发生相变的临界尺寸. 关键词: 纳米多晶体 热力学函数 相变热力学  相似文献   

10.
In this work we present a study of the properties of defective nanostructures. The material chosen to this purpose, i.e. SnO2, has practical applications and many of them rely on the spontaneous formation of vacancies. Therefore, crystalline grains with shape and size comparable to the experimental ones have been considered. According to the bulk properties, the grains lattice has the rutile structure and may also include vacancy defects. The calculations describe the effects of the structural grain parameters, i.e. size and shape, as well as of the defect type, on the grain cohesion and are based on a Tight Binding method. The comparison with Density Functional calculations, also carried out in the course of this study, illustrates the limits of both methods when used for these complex structures.Received: 7 October 2004, Published online: 23 December 2004PACS: 61.46. + w Nanoscale materials: clusters, nanoparticles and nanocrystals - 31.10. + z Theory of electronic structure, electronic transitions and chemical bonding - 31.15.Ew Density functional theory  相似文献   

11.
This review is devoted to the effect of grain boundaries on the deformational and strength properties of poly-, micro-, and nanocrystalline materials (predominantly metals). The main experimental facts and mechanisms concerning the dislocation structure and mechanical behavior of these materials over wide ranges of temperatures and grain sizes are presented. The experimentally established regularities are analyzed theoretically in terms of equations of dislocation kinetics taking into account the properties of grain boundaries as barriers, sources, and sinks for dislocations and as places where dislocations annihilate. The origin of the Hall-Petch relations for the yield stress and the flow stress as functions of the grain size, as well as the deviations from these relations observed in nano- and microcrystalline materials, is discussed in detail in terms of the dislocation-kinetics approach. Embrittlement of micro- and nanocrystalline materials at low temperatures and superplasticity of these materials at elevated temperatures are also analyzed in terms of the dislocation-kinetics approach.  相似文献   

12.
We have investigated the relations between microstructure and dielectric properties in order to fabricate sol-gel-derived highly (100) oriented Ba0.5Sr0.5TiO3 (BST 50/50) thin films with properties comparable to those of the bulk material. For the first time, we were able to fabricate BST thin films which exhibited the orthorhombic-to-tetragonal transition in addition to the commonly observed tetragonal-to-cubic transition. We were successful in explaining the commonly observed degradation of the dielectric behavior of BST thin films, when compared to that of the bulk material, in terms of grain size, compositional inhomogeneity (measured in terms of Sr/Ba ratio) between the grain bulk and grain boundary, and mechanical stresses. PACS 77.55.+f; 77.22Gm; 77.80.Bh; 77.80.Dj  相似文献   

13.
Concerning the use of air classifiers with cut sizes in the micron range and lower, it is necessary to disperse the feed material properly in an air flow to avoid agglomerates larger than the desired cut size. Commonly used dispersing devices such as injectors use large amounts of air. To reduce the size and costs of the subsequent air classifiers, two new types of dispersing systems were developed, one design being related to a brush feeder and the other to a pin mill. Both apply mechanical rather than fluid mechanical forces in the dispersion process. The brush disperser achieves the same size distributions as the pin mill disperser with much less machinery. Its properties as a feeding and dispersing system are shown and its ability to disperse particles in the submicron range is confirmed by two independent particle size analysis systems: a new diffraction spectrometer and an impactor.  相似文献   

14.
RamanSpectroscopicStudyofNanophaseTitanlumDioxidePeiFei ̄+;HuangQiangandZhangMing一Sheng(PhysicsDepartment ̄+,ComputerCenter,Cen...  相似文献   

15.
There is considerable interest in nanocrystalline materials due to their unusual properties that offer the possibility of exciting technological applications. This paper concentrates on the microstructure of nanocrystalline binary oxides as revealed by X-ray absorption studies. It will be shown that these experiments yield a picture of the materials in which, even when the particles are only a few nanometres in size, the crystallites are highly ordered and the interfaces are similar to grain boundaries in normal bulk solids. This is in conflict with earlier ideas where it was often assumed the surfaces of nanocrystals and the interfaces between them were very disordered.  相似文献   

16.
Atomistic calculations of the elastic constants for a bulk nanostructured material that consists of a layered structure where alternating layers meet along high angle grain boundaries and where atoms interact via a Lennard-Jones potential are presented. The calculations of the elastic constants were performed in the frame of homogeneous deformations for a wide range of layer widths ranging from 2.24 up to 74.62 nm. The results showed that the relaxation of the atomic structure affects the elastic constants for the cases where more than 5% of atoms are located in the GB region. Also it was found that the way that external stresses are applied on the system affects the values of the obtained elastic properties, with the elastic constants related to the characteristic directions of the grain boundary being the most affected ones. The findings of this work are of interest for the fabrication methods of nanostructured materials, the measurement methods of their elastic properties as well as multiscale modeling schemes of nanostructured materials.  相似文献   

17.
Resonant ultrasound spectroscopy was used to study the elastic constants and internal friction of two nanocrystalline palladium samples over the temperature range 3–300 K. The first material, nc-Pd, had a grain size of 80–100 nm and a density 93% of that of single-crystal bulk palladium. The second material, nc-PdSi containing 0.5 at.% Si, had a grain size of 15–22 nm and a density 97% of the single-crystal value. The bulk and shear moduli were significantly reduced in the nc-Pd material from that expected based on single-crystal data, the effect being greater for the bulk modulus. The moduli of nc-PdSi were reduced 4–5% from that based on crystalline Pd. As compared to previous reports of the elastic moduli of nanocrystalline palladium (grain size 5–15 nm) the present values for the larger-grained nc-Pd are comparable, but the present values for the smaller-grained nc-PdSi are considerably higher. An internal friction peak and a modulus defect were found in the nc-Pd material, but not in the nc-PdSi material. These effects are attributed to a relaxation process at the grain boundaries. The temperature dependence of the moduli is similar to that of crystalline palladium and is strongly influenced by electronic effects.  相似文献   

18.
J. Monk 《哲学杂志》2013,93(14-15):2233-2244
We investigate size effects in nanocrystalline nickel nanowires using molecular dynamics and an EAM potential. Both compressive and tensile deformation tests were performed for nanowires with radii ranging from 5 to 18?nm and a grain size of 10?nm. The wires contained up to four million atoms and were tested using a strain rate of 3.33?×?108?s?1. The results are compared with similar tests for a periodic system, which models a bulk macroscopic sample size of the same nanocrystalline material. The importance of dislocation-mediated plasticity decreases as the wire diameter is decreased and is more relevant under compression than under tension. A significant tension–compression asymmetry was observed, which is strongly dependent on the wire size. For the bulk nanocrystalline samples and larger wire radii, the flow stresses are higher under compression than under tension. This effect decreases as the wire radius decreases and is reversed for the smallest wires tested. Our results can be explained by the interplay of nano-scale effects in the grain sizes and in the wire radii.  相似文献   

19.
Andrzej Korbel 《哲学杂志》2013,93(15):1883-1913
The work brings the results of the study on mechanical properties of some metallic materials subjected to very large plastic deformation by KOBO extrusion. The unexpected features of the KOBO products like Lüders deformation in pure metals and superplastic flow in coarse grain materials are discussed in terms of micro- and nano-scale elements of their structure. The choice to the experiment materials having different crystallographic and phase structure (commercial purity aluminium, multiphase aluminium 7075 alloy, pure zinc and multiphase magnesium AZ91 alloy) and different history (extrusion, casting) allowed to identify the common nano-size elements of the structure generated during the KOBO deformation which seems to be responsible for the mechanical behaviour of these materials. In particular, clusters of point defects (self-interstitials) formed under the KOBO extrusion conditions (cyclic change in the deformation path, high hydrostatic pressure) were found in these materials regardless of grain size and material early history. They correlate with appearance of unstable Lüders-like or even Portevin–LeChatelier deformation at ambient and superplastic flow at elevated temperatures.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号