首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
An effective gas-liquid chromatographic separation of thirteen energetic dicyclopentadiene derivatives has been established using OV-17 as the stationary phase. FID was chosen as the favorable detector after comparing its response factors with those of TCD. Using this method good repeatability, reproducibility and precision are obtained in both qualitative and quantitative analyses of compounds investigated.  相似文献   

2.
3.
Summary A gas chromatography-mass spectrometric assay method was developed for the simultaneous determination of 2,6-di-tert-butylphenol (DTBP) and 2,4-dimethyl-6-tert-butylphenol (DMTBP) in aviation fuel. Extraction and purification were achieved with a solid phase extraction procedure using silica gel. Elution was performed with 30 mL of methylene chloride: pentane (2:3) following washing with 10 mL of n-pentane. The extract was concentrated to about 100 L and analyzed by GC-MS (SIM). The peaks had good chromatographic properties by using a semi-polar column (Innowax) and the extraction of these compounds from samples gave recoveries of about 87% for DTBP and about 75% for DMTBP with small variations. Method detection limits were 5.0 ng mL–1 for DBMP and 7.0 ng mL–1 for DMTBP. The method may be useful for spilled fuel type differentiation between kerosene and JP-8.  相似文献   

4.
高效液相色谱法测定柴油族组成   总被引:4,自引:3,他引:4  
陶学明  龙义成  陆婉珍 《色谱》1995,13(5):368-372
在银型磺酸键合硅胶柱上以含苯或环己烯的正己烷为流动相,实现了饱和烃、烯烃的基线分离,以改进的迁移丝式氢火焰离子化检测器(MW-FID)进行定量检测,同时考察了Ag-SCX柱的使用性能及改进的MW-FID的定量准确性。在此基础上建立了高效液相色谱体系分离柴油族组成(饱和烃、烯烃、芳烃及胶质)。  相似文献   

5.
The energy transition from fossil fuels to renewables is already ongoing, but it will be a long and difficult process because the energy system is a gigantic and complex machine. Key renewable energy production data show the remarkable growth of solar electricity technologies and indicate that crystalline silicon photovoltaics (PV) and wind turbines are the workhorses of the first wave of renewable energy deployment on the TW scale around the globe. The other PV alternatives (e.g., copper/indium/gallium/selenide (CIGS) or CdTe), along with other less mature options, are critically analyzed. As far as fuels are concerned, the situation is significantly more complex because making chemicals with sunshine is far more complicated than generating electric current. The prime solar artificial fuel is molecular hydrogen, which is characterized by an excellent combination of chemical and physical properties. The routes to make it from solar energy (photoelectrochemical cells (PEC), dye‐sensitized photoelectrochemical cells (DSPEC), PV electrolyzers) and then synthetic liquid fuels are presented, with discussion on economic aspects. The interconversion between electricity and hydrogen, two energy carriers directly produced by sunlight, will be a key tool to distribute renewable energies with the highest flexibility. The discussion takes into account two concepts that are often overlooked: the energy return on investment (EROI) and the limited availability of natural resources—particularly minerals—which are needed to manufacture energy converters and storage devices on a multi‐TW scale.  相似文献   

6.
Over the last several years,the need to find clean and renewable energy sources has increased rapidly because current fossil fuels will not only eventually be depleted,but their continuous combustion leads to a dramatic increase in the carbon dioxide amount in atmosphere.Utilisation of the Sun’s radiation can provide a solution to both problems.Hydrogen fuel can be generated by using solar energy to split water,and liquid fuels can be produced via direct CO2 photoreduction.This would create an essentially free carbon or at least carbon neutral energy cycle.In this tutorial review,the current progress in fuels’ generation directly driven by solar energy is summarised.Fundamental mechanisms are discussed with suggestions for future research.  相似文献   

7.
The potential energy surfaces for butanone isomerization have been investigated by density function theory calculation. Six main reaction pathways are confirmed using the intrinsic reaction coordinate method, and the corresponding isomerization products are 1-buten-2-ol, 2-buten-2-ol, butanal or 1-buten-l-ol, methyl 1-propenyl ether, methyl allyl ether, and ethyl vinyl ether, respectively. Among them, there are three pathways through butylene oxide, indicating butylene oxide is an important intermediate product during butanone isomer ization. The calculated vertical ionization energies of the reactant and its products are in a good agreement with the experimental values available. From the consideration for the relative energies Of transition states and the number of high-energy barriers we infer that the reaction pathway butanone-*l-buten-2-ol---2-buten-2-oi is the most competitive. The obtained results are informative for future studies on isomerization of ketone molecules.  相似文献   

8.
有应用前景的低感高能炸药研究进展   总被引:2,自引:0,他引:2  
概述了有应用前景的高能低感炸药的研究成果,从改善现有高能炸药晶体品质和合成新的高能低感炸药方面,总结了大幅度降低炸药冲击波感度的研究现状。  相似文献   

9.
Modern methods of recycling organic waste are not considered viable today. Therefore, an important advantage of the proposed technology is to obtain mineral fuel products as an output. The technologies of high-temperature processing are based on thermal decomposition of waste without oxygen at high temperature. In pyrolysis, wastes are converted into gaseous, liquid and solid fuels. Thereby, the properties and composition of the liquid feedstock obtained by pyrolysis with a boiling temperature in the range of X.I. (38) - 180 °C, 180 - 320 °C and more than 320 °C were investigated. Residue with a boiling temperature over 320° C (52.4% vol.) is the main portion of the synthetic liquid fuels (SLF). It can be attributed to fuel oil grade 100 and used as boiler fuel or fuel oil additives according to the studied physicochemical parameters.  相似文献   

10.
Ultrafine full-vulcanized polybutadiene rubber(UFBR) with particle sizes of ca.50―100 nm were used for modifying mechanical and processing performances of polypropylene(PP) with PP-g-maleic anhydride(PP-g-MA) as a compatibilizer for enhancing the interfacial adhesion between the two components.The morphology,dynamical rheology response and mechanical properties of the blends were characterized by means of SEM,rheometer and tensile test,respectively.The results show that the ternary PP/UFBR blends compatibil...  相似文献   

11.
有关小分子醇、H。和CO等易燃气体在铂催化下的高温燃烧的温度振荡及以表面活性剂为关键组分的液膜扩散振荡已有报道"-'-.但由界面膜作用而产生的乳化燃油燃烧中的振荡反应尚无其它可操作的原始研究文献,只是在前文['j中提及过出现该现象.为了解乳化燃油燃烧过程中界面变化及其对燃烧的作用,通过静态燃烧实验配方的调节及变换以改变燃烧界面的情况.实验发现,在乳化燃油中加入一般的食用豆油,并使之水解出长链竣酸盐,则富集在燃烧界面上的长链竣酸盐所形成的界面膜对燃烧的自阻抑作用便会产生明显的振荡反应,形成火焰温度与高…  相似文献   

12.
Catalytic C1 chemistry based on the activation/conversion of synthesis gas (CO+H2), methane, carbon dioxide, and methanol offers great potential for the sustainable development of hydrocarbon fuels to replace oil, coal, and natural gas. Traditional thermal catalytic processes used for C1 transformations require high temperatures and pressures, thereby carrying a significant carbon footprint. In comparison, solar‐driven C1 catalysis offers a greener and more sustainable pathway for manufacturing fuels and other commodity chemicals, although conversion efficiencies are currently too low to justify industry investment. In this Review, we highlight recent advances and milestones in light‐driven C1 chemistry, including solar Fischer–Tropsch synthesis, the water‐gas‐shift reaction, CO2 hydrogenation, as well as methane and methanol conversion reactions. Particular emphasis is placed on the rational design of catalysts, structure–reactivity relationships, as well as reaction mechanisms. Strategies for scaling up solar‐driven C1 processes are also discussed.  相似文献   

13.
一种制备用于正庚烷异构化的Pt-WO3/ZrO2催化剂的新方法   总被引:3,自引:0,他引:3  
宋建华  王海  徐柏庆 《催化学报》2004,25(8):599-601
 采用不同的ZrO(OH)2前驱体制备了WO3-ZrO2和Pt/WO3-ZrO2催化剂. 结果表明,与常规的ZrO(OH)2水凝胶为前驱体制备的WO3-ZrO2-CP催化剂相比,以常压流动氮气中干燥处理的ZrO(OH)2乙醇凝胶为前驱体制备的WO3-ZrO2-AN催化剂对正庚烷临氢异构化反应具有更高的催化活性. 当在 WO3-ZrO2-AN中添加少量Pt时,其催化活性和稳定性均得到显著提高. 表明以ZrO(OH)2醇凝胶为前驱体可以制备出高效稳定的Pt/WO3-ZrO2-AN催化剂.  相似文献   

14.
本文研究了喷气燃料中悬浮物有机成分的分离和定性分析。先通过孔径0.025μm的微孔滤膜过滤分离出喷气燃料中的悬浮物,依次用正己烷和二氯甲烷提取悬浮物中的有机成分,再利用气相色谱/质谱联用技术对悬浮物的正己烷相溶液和二氯甲烷相溶液进行定性分析,共检测出了2,6-二叔丁基对甲酚、1,2-二氧芑-3-乙酸,6-十六烷基-3,6-二氢-6-甲氧基-甲基酯、5-甲基-5H-苯并[23-c]咔唑等47种成分,为研究悬浮物的形成机理提供了实验依据。  相似文献   

15.
The dynamics of carbon monoxide on Cu surfaces was investigated during CO reduction, providing insight into the mechanism leading to the formation of hydrogen, methane, and ethylene, the three key products in the electrochemical reduction of CO2. Reaction order experiments were conducted at low temperature in an ethanol medium affording high solubility and surface‐affinity for carbon monoxide. Surprisingly, the methane production rate is suppressed by increasing the pressure of CO, whereas ethylene production remains largely unaffected. The data show that CH4 and H2 production are linked through a common H intermediate and that methane is formed through reactions among adsorbed H and CO, which are in direct competition with each other for surface sites. The data exclude the participation of solution species in rate‐limiting steps, highlighting the importance of increasing surface recombination rates for efficient fuel synthesis.  相似文献   

16.
新型高效液相色谱酰胺键合固定相的制备与评价   总被引:1,自引:0,他引:1  
将YWG-80硅胶和3-氨基丙基三甲氧基硅烷反应后与2-壬基丁二酰氯反应制得一种新型双齿酰胺键合固定相(BABSP-2)。采用元素分析和傅里叶变换红外光谱表征了键合相;用芳香族化合物溶质和甲醇-水二元流动相,考察了键合相的疏水选择性和亲硅醇基活性;评估了在酸性条件下(pH2.5)的水解稳定性。结果表明:BABSP-2能有效抑制残留硅醇基活性,并具有可比的疏水选择性和较好的水解稳定性。  相似文献   

17.
介绍一种新型动力电池——LiFePO4锂离子电池,具体阐述了它的工作原理、制备方法和特点,并展望其在生活、生产中的应用前景。  相似文献   

18.
反相高效液相色谱法测定高能发射药中5种组分   总被引:1,自引:0,他引:1  
提出了反相高效液相色谱法测定高能发射药中5种组分硝化甘油(NG)、黑索今(RDX)、硝基胍(NQ)、Ⅱ号中定剂(C2)和邻苯二甲酸二正辛酯(DOP)的含量。试样溶解后进行色谱分离,采用Agilent色谱柱(150mm×4.6mm,5μm),流动相为甲醇-水(60+40)混合溶液(用于分离NG、RDX、NQ和C2)和甲醇-水(95+5)混合溶液(用于分离DOP),在波长220nm处进行测定。NG的质量浓度在0.42~4.08g.L-1,RDX在1.41~5.04g.L-1,NQ在1.11~3.74g.L-1,C2在0.07~0.90g.L-1,DOP在0.08~0.37g.L-1时分别与其峰面积呈线性关系。5种化合物的加标回收率在99.3%~101.9%之间;相对标准偏差(n=6)在0.19%~3.1%之间。  相似文献   

19.
We show that a robust molybdenum hydride system can sustain photoelectrocatalysis of a hydrogen evolution reaction at boron‐doped, hydrogen‐terminated, p‐type silicon. The photovoltage for the system is about 600–650 mV and the current densities, which can be sustained at the photocathode in non‐catalytic and catalytic regimes, are similar to those at a photoinert vitreous carbon electrode. The kinetics of electrocatalysed hydrogen evolution at the photocathode are also very similar to those measured at vitreous carbon—evidently visible light does not significantly perturb the catalytic mechanism. Importantly, we show that the doped (1–10 Ω cm) p‐type Si can function perfectly well in the dark as an ohmic conductor and this has allowed direct comparison of the cyclic voltammetric behaviour of the response of the system under dark and illuminated conditions at the same electrode. The p‐type Si we have employed optimally harvests light energy in the 600–700 nm region and with 37 mW cm?2 illumination in this range; the light to electrochemical energy conversion is estimated to be 2.8 %. The current yield of hydrogen under broad tungsten halide lamp illumination at 90 mW cm?2 is (91±5) % with a corresponding chemical yield of (98±5) %.  相似文献   

20.
Lithium ion batteries (LIBs) have broad applications in a wide variety of a fields pertaining to energy storage devices. In line with the increasing demand in emerging areas such as long-range electric vehicles and smart grids, there is a continuous effort to achieve high energy by maximizing the reversible capacity of electrode materials, particularly cathode materials. However, in recent years, with the continuous enhancement of battery energy density, safety issues have increasingly attracted the attention of researchers, becoming a non-negligible factor in determining whether the electric vehicle industry has a foothold. The key issue in the development of battery systems with high specific energies is the intrinsic instability of the cathode, with the accompanying question of safety. The failure mechanism and stability of high-specific-capacity cathode materials for the next generation of LIBs, including nickel-rich cathodes, high-voltage spinel cathodes, and lithium-rich layered cathodes, have attracted extensive research attention. Systematic studies related to the intrinsic physical and chemical properties of different cathodes are crucial to elucidate the instability mechanisms of positive active materials. Factors that these studies must address include the stability under extended electrochemical cycles with respect to dissolution of metal ions in LiPF6-based electrolytes due to HF corrosion of the electrode; cation mixing due to the similarity in radius between Li+ and Ni2+; oxygen evolution when the cathode is charged to a high voltage; the origin of cracks generated during repeated charge/discharge processes arising from the anisotropy of the cell parameters; and electrolyte decomposition when traces of water are present. Regulating the surface nanostructure and bulk crystal lattice of electrode materials is an effective way to meet the demand for cathode materials with high energy density and outstanding stability. Surface modification treatment of positive active materials can slow side reactions and the loss of active material, thereby extending the life of the cathode material and improving the safety of the battery. This review is targeted at the failure mechanisms related to the electrochemical cycle, and a synthetic strategy to ameliorate the properties of cathode surface locations, with the electrochemical performance optimized by accurate surface control. From the perspective of the main stability and safety issues of high-energy cathode materials during the electrochemical cycle, a detailed discussion is presented on the current understanding of the mechanism of performance failure. It is crucial to seek out favorable strategies in response to the failures. Considering the surface structure of the cathode in relation to the stability issue, a newly developed protocol, known as surface-localized doping, which can exist in different states to modify the surface properties of high-energy cathodes, is discussed as a means of ensuring significantly improved stability and safety. Finally, we envision the future challenges and possible research directions related to the stability control of next-generation high-energy cathode materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号