首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《力学快报》2020,10(3):207-212
Physics-informed deep learning has drawn tremendous interest in recent years to solve computational physics problems, whose basic concept is to embed physical laws to constrain/inform neural networks, with the need of less data for training a reliable model. This can be achieved by incorporating the residual of physics equations into the loss function. Through minimizing the loss function, the network could approximate the solution. In this paper, we propose a mixed-variable scheme of physics-informed neural network(PINN) for fluid dynamics and apply it to simulate steady and transient laminar flows at low Reynolds numbers. A parametric study indicates that the mixed-variable scheme can improve the PINN trainability and the solution accuracy. The predicted velocity and pressure fields by the proposed PINN approach are also compared with the reference numerical solutions. Simulation results demonstrate great potential of the proposed PINN for fluid flow simulation with a high accuracy.  相似文献   

2.
A frequent configuration in computational fluid mechanics combines an explicit time advancing scheme for accuracy purposes and a computational grid with a very small portion of much smaller elements than in the remaining mesh. Two examples of such situations are the travel of a discontinuity followed by a moving mesh, and the large eddy simulation of high Reynolds number flows around bluff bodies where together very thin boundary layers and vortices of much more important size need to be captured. For such configurations, multistage explicit time advancing schemes with global time stepping are very accurate but very CPU consuming. In order to reduce this problem, the multirate (MR) time stepping approach represents an interesting improvement. The objective of such schemes, which allow to use different time steps in the computational domain, is to avoid penalizing the computational cost of the time advancement of unsteady solutions that would become large due to the use of small global time steps imposed by the smallest elements such as those constituting the boundary layers. In the present work, a new MR scheme based on control volume agglomeration is proposed for the solution of the compressible Navier-Stokes equations equipped with turbulence models. The method relies on a prediction step where large time steps are performed with an evaluation of the fluxes on macrocells for the smaller elements for stability purpose and a correction step in which small time steps are employed. The accuracy and efficiency of the proposed method are evaluated on several benchmarks flows: the problem of a moving contact discontinuity (inviscid flow), the computation with a hybrid turbulence model of flows around bluff bodies like a flow around a space probe model at Reynolds number 106, a circular cylinder at Reynolds number 8.4 × 106, and two tandem cylinders at Reynolds number 1.66 × 105 and 1.4 × 105.  相似文献   

3.
The equations governing the flow of a viscous fluid in a two‐dimensional channel with weakly modulated walls have been solved using a perturbation approach, coupled to a variable‐step finite‐difference scheme. The solution is assumed to be a superposition of a mean and perturbed field. The perturbation results were compared to similar results from a classical finite‐volume approach to quantify the error. The influence of the wall geometry and flow Reynolds number have extensively been investigated. It was found that an explicit relation exists between the critical Reynolds number, at which the wall flow separates, and the dimensionless amplitude and wavelength of the wall modulation. Comparison of the flow shows that the perturbation method requires much less computational effort without sacrificing accuracy. The differences in predicted flow is kept well around the order of the square of the dimensionless amplitude, the order to which the regular perturbation expansion of the flow variables is carried out. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

4.
The flow around spherical, solid objects is considered. The boundary conditions on the solid boundaries have been applied by replacing the boundary with a surface force distribution on the surface, such that the required boundary conditions are satisfied. The velocity on the boundary is determined by extrapolation from the flow field. The source terms are determined iteratively, as part of the solution. They are then averaged and are smoothed out to nearby computational grid points. A multi‐grid scheme has been used to enhance the computational efficiency of the solution of the force equations. The method has been evaluated for flow around both moving and stationary spherical objects at very low and intermediate Reynolds numbers. The results shows a second order accuracy of the method both at creeping flow and at Re=100. The multi‐grid scheme is shown to enhance the convergence rate up to a factor 10 as compared to single grid approach. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

5.
A computational method has been developed to predict the turbulent Reynolds stresses and turbulent heat fluxes in ducts by different turbulence models. The turbulent Reynolds stresses and other turbulent flow quantities are predicted with a full Reynolds stress model (RSM). The turbulent heat fluxes are modelled by a SED concept, the GGDH and the WET methods. Two wall functions are used, one for the velocity field and one for the temperature field. All the models are implemented for an arbitrary three‐dimensional channel. Fully developed condition is achieved by imposing cyclic boundary conditions in the main flow direction. The numerical approach is based on the finite volume technique with a non‐staggered grid arrangement. The pressure–velocity coupling is handled by using the SIMPLEC‐algorithm. The convective terms are treated by the van Leer scheme while the diffusive terms are handled by the central‐difference scheme. The hybrid scheme is used for solving the ε equation. The secondary flow generation using the RSM model is compared with a non‐linear kε model (non‐linear eddy viscosity model). The overall comparison between the models is presented in terms of the friction factor and Nusselt number. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

6.
A finite volume computational scheme to solve the Navier-Stokes equations for the laminar flow fields of partially enclosed axial and radial jets impinging on a flat plate has been devised and tested. This scheme is based on the SIMPLEC technique. However, because of the backflow at the ‘outflow’ boundary, the SIMPLEC pressure correction technique has to be modified. The need for this modification, necessitated by the convergence failure, showed the ‘hidden’ pressure boundary condition of SIMPLE-type techniques. Test computations with the present scheme for flows in a channel with a built-in cylinder show that the location of the exit boundary affects very slightly the separated flow behind the cylinder. Computed Squire jet flows compare quite well with the available analytical solution. Finally, impinging radial jets have been computed for different Reynolds numbers. The results show the critical Reynolds number below which a steady solution is obtained and above which periodic and eventually chaotic flows result.  相似文献   

7.
In the framework of a cell-centered finite volume method (FVM), the advection scheme plays the most important role in developing FVMs to solve complicated fluid flow problems for a wide range of Reynolds numbers. Advection schemes have been widely developed for FVMs employing pressure-velocity coupling methodology in the incompressible flow limit. In this regard, the physical influence upwind scheme (PIS) is developed for a cell-centered finite volume coupled solver (FVCS) using a pressure-weighted interpolation method for linking the pressure and velocity fields. The well-known exponential differencing scheme and skew upwind differencing scheme are also deployed in the current FVCS and their numerical results are presented. The accuracy and convergence of the present PIS are evaluated solving flow in a lid-driven square cavity, a lid-driven skewed cavity, and over a backward-facing step (BFS). The flow within the lid-driven square cavity is numerically solved at Reynolds numbers from 400 to 10 000 on a relatively coarse mesh with respect to other reported solutions. The lid-driven skewed cavity test case at Reynolds number of 1000 demonstrates the numerical performance of the present PIS on nonorthogonal grids. The flow over a BFS at Reynolds number of 800 is numerically solved to examine capabilities of current FVCS employing the current PIS in inlet-outlet flow computations. The numerical results obtained by the current PIS are in excellent agreement with those of benchmark solutions of corresponding test cases. Incorporating implicit role of pressure terms in a pressure-weighted interpolation method and development of PIS provides satisfactory solution convergence alongside the numerical accuracy for the current FVCS. A particular numerical verification is performed for the V velocity calculation within the BFS flow field, which confirms the reliability of present PIS.  相似文献   

8.
A non-linear modelling of the Reynolds stresses has been incorporated into a Navier–Stokes solver for complex three-dimensional geometries. A k–ε model, adopting a modelling of the turbulent transport which is not based on the eddy viscosity, has been written in generalised co-ordinates and solved with a finite volume approach, using both a GMRES solver and a direct solver for the solution of the linear systems of equations. An additional term, quadratic in the main strain rate, has been introduced into the modelling of the Reynolds stresses to the basic Boussinesq's form; the corresponding constant has been evaluated through comparison with the experimental data. The computational procedure is implemented for the flow analysis in a 90° square section bend and the obtained results show that with the non-linear modelling a much better agreement with the measured data is obtained, both for the velocity and the pressure. The importance of the convection scheme is also discussed, showing how the effect of the non-linear correction added to the Reynolds stresses is effectively hidden by the additional numerical diffusion introduced by a low-order convection scheme as the first-order upwind scheme, thus making the use of higher order schemes necessary. © 1998 John Wiley & Sons, Ltd.  相似文献   

9.
Velocity–pressure integrated and consistent penalty finite element computations of high-Reynolds-number laminar flows are presented. In both methods the pressure has been interpolated using linear shape functions for a triangular element which is contained inside the biquadratic flow element. It has been shown previously that the pressure interpolation method, when used in conjunction with the velocity-pressure integrated method, yields accurate computational results for high-Reynolds-number flows. It is shown in this paper that use of the same pressure interpolation method in the consistent penalty finite element method yields computational results which are comparable to those of the velocity–pressure integrated method for both the velocity and the pressure fields. Accuracy of the two finite element methods has been demonstrated by comparing the computational results with available experimental data and/or fine grid finite difference computational results. Advantages and disadvantages of the two finite element methods are discussed on the basis of accuracy and convergence nature. Example problems considered include a lid-driven cavity flow of Reynolds number 10 000, a laminar backward-facing step flow and a laminar flow through a nest of cylinders.  相似文献   

10.
In this paper, we develop a coupled continuous Galerkin and discontinuous Galerkin finite element method based on a split scheme to solve the incompressible Navier–Stokes equations. In order to use the equal order interpolation functions for velocity and pressure, we decouple the original Navier–Stokes equations and obtain three distinct equations through the split method, which are nonlinear hyperbolic, elliptic, and Helmholtz equations, respectively. The hybrid method combines the merits of discontinuous Galerkin (DG) and finite element method (FEM). Therefore, DG is concerned to accomplish the spatial discretization of the nonlinear hyperbolic equation to avoid using the stabilization approaches that appeared in FEM. Moreover, FEM is utilized to deal with the Poisson and Helmholtz equations to reduce the computational cost compared with DG. As for the temporal discretization, a second‐order stiffly stable approach is employed. Several typical benchmarks, namely, the Poiseuille flow, the backward‐facing step flow, and the flow around the cylinder with a wide range of Reynolds numbers, are considered to demonstrate and validate the feasibility, accuracy, and efficiency of this coupled method. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

11.
Stabilised mixed velocity–pressure formulations are one of the widely-used finite element schemes for computing the numerical solutions of laminar incompressible Navier–Stokes. In these formulations, the Newton–Raphson scheme is employed to solve the nonlinearity in the convection term. One fundamental issue with this approach is the computational cost incurred in the Newton–Raphson iterations at every load/time step. In this paper, we present an iteration-free mixed finite element formulation for incompressible Navier–Stokes that preserves second-order temporal accuracy of the generalised-alpha and related schemes for both velocity and pressure fields. First, we demonstrate the second-order temporal accuracy using numerical convergence studies for an example with a manufactured solution. Later, we assess the accuracy and the computational benefits of the proposed scheme by studying the benchmark example of flow past a fixed circular cylinder. Towards showcasing the applicability of the proposed technique in a wider context, the inf–sup stable P2–P1 pair for the formulation without stabilisation is also considered. Finally, the resulting benefits of using the proposed scheme for fluid–structure interaction problems are illustrated using two benchmark examples in fluid-flexible structure interaction.  相似文献   

12.
With the invention of the Hexagonal Lattice Gas it was hoped that this new technique would facilitate direct simulation of turbulent flow. In the past years, however, we have learned about its barriers on numerical accuracy and computational efficiency, which cannot easily be taken. The work on lattice gases has evolved in the introduction of the lattice-Boltzmann scheme. With the appropriate refinements this scheme provides the essential balance between robustness and numerical accuracy and enables us to simulate three-dimensional time-dependent flows at Reynolds numbers up to 50000.  相似文献   

13.
In this paper, we present the application of a finite element scheme to full three-dimensional incompressible flow around a cube mounted on the wall in a channel. This scheme is based on the Petrov-Galerkin weak formulation using exponential weighting functions. The incompressible Navier-Stokes equations are numerically integrated in time by using a fractional step strategy with a second-order accurate Adams-Bashforth scheme. The workability and validity of the present approach are demonstrated through the results of streamlines and pressure coefficients in the flow field up to high Reynolds number regimes.  相似文献   

14.
A virtual‐characteristic approach is developed for thermo‐flow with finite‐volume methodology in which a multidimensional characteristic (MC) scheme is applied along with artificial compressibility. To obtain compatibility equations and pseudo‐characteristics, energy equation is taken into account in the MC scheme. With this inherent upwinding of convective fluxes, no artificial viscosity is required even at high Reynolds numbers. Another remarkable advantage of the MC scheme lies in its faster convergence rate with respect to the averaging scheme that is found to exhibit substantial delays in convergence. As benchmarks, forced and mixed convections in a cavity and in flow over cylinder and between parallel plates are examined for a wide range of Reynolds, Grashof, and Prandtl numbers. The MC and averaging schemes are applied for simulation purposes. Results show the better performance of the MC scheme in forced and mixed convections. Results confirm the robustness of the MC scheme in terms of accuracy and convergence. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
以二维方腔顶盖驱动流为模型,将多重网格方法和SIMPLER算法进行耦合,对不同雷诺数下多重网格加速SIMPLER算法和SIMPLER算法的计算效率进行了对比,数值计算表明:多重网格加速SIMPLER算法不仅能够解决SIMPLER算法不能准确模拟较高雷诺数流场的问题,而且其计算效率远远高于SIMPLER算法.本文也对松弛因子的选取、多重网格实现形式以及网格层数对多重网格加速SIMPLER算法的影响进行了研究,从而为多重网格加速SIMPLER算法的实施提供了计算技术.  相似文献   

16.
A new upwind finite element scheme for the incompressible Navier-Stokes equations at high Reynolds number is presented. The idea of the upwind technique is based on the choice of upwind and downwind points. This scheme can approximate the convection term to third-order accuracy when these points are located at suitable positions. From the practical viewpoint of computation, the algorithm of the pressure Poisson equation procedure is adopted in the framework of the finite element method. Numerical results of flow problems in a cavity and past a circular cylinder show excellent dependence of the solutions on the Reynolds number. The influence of rounding errors causing Karman vortex shedding is also discussed in the latter problem.  相似文献   

17.
In the present work the viscous (low Reynolds) flow in plane ducts confined by permeable walls has been studied. A simple model of the filtrating walls has been used, with the normal velocity component proportional to the pressure jump across the wall, resulting in a non-standard boundary value Navier-Stokes problem. A critical analysis of the appropriate boundary condition and pressure problem has led to the conclusions of employing a simple explicit finite volume approach, and of avoiding the use of higher order finite difference schemes. In this paper a special emphasis on the structure of the involved computational matrices has been given to illustrate the chosen algorithm. The latter yields a steady state solution that is second order accurate in space, and it has an accuracy in time of order ≤ Δt (the time step), due to the explicit treatment of the velocity boundary conditions along the membrane. The model has been tested to study the effects of the inlet/outlet conditions, Reynolds number and filtrating wall constant.  相似文献   

18.
This investigation concerns numerical calculation of turbulent forced convective heat transfer and fluid flow in straight ducts using the RNG (Re-Normalized Group) turbulence method.

A computational method has been developed to predict the turbulent Reynolds stresses and turbulent heat fluxes in ducts with different turbulence models. The turbulent Reynolds stresses and other turbulent flow quantities are predicted with the RNG κ?ε model and the RNG non-linear κ-ε model of Speziale. The turbulent heat fluxes are modeled by the simple eddy diffusivity (SED) concept, GGDH and WET methods. Two wall functions are used, one for the velocity field and one for the temperature field. All the models arc implemented for an arbitrary three dimensional duct.

Fully developed condition is achieved by imposing cyclic boundary conditions in the main flow direction. The numerical approach is based on the finite volume technique with a non-staggered grid arrangement. The pressure-velocity coupling is handled by using the SIMPLEC-algorithm. The convective terms are treated by the QUICK, scheme while the diffusive terms are handled by the central-difference scheme. The hybrid scheme is used for solving the κ and ε equations.

The overall comparison between the models is presented in terms of friction factor and Nusselt number. The secondary flow generation is also of major concern.  相似文献   

19.
The use of the velocity-pressure formulation of the Navier-Stokes equations for the numerical solution of fluid flow problems is favoured for free-surface problems, more involved flow configurations, and three-dimensional flows. Many engineering problems involve such features in addition to strong inertial effects. The computational instabilities arising from central-difference schemes for the convective terms of the governing equations impose serious limitations on the range of Reynolds numbers that can be investigated by the numerical method. Solutions for higher Reynolds numbers Re > 1000 could be reached using upwind-difference schemes. A comparative study of both schemes using a method based on the primitive variables is presented. The comparison is made for the model problem of the driven flow in a square cavity. Using a central scheme stable solutions of the pressure and velocity fields were obtained for Reynolds numbers up to 5000. The streamfunction and vorticity fields were calculated from the resulting velocity field and compared with previous solutions. It is concluded that total upwind differencing results in a considerable change in the flow pattern due to the false diffusion. For practical calculations, by a proper choice of a small amount of partial upwind differencing the vorticity diffusion near the walls and the global features of the solutions are not sigificantly altered.  相似文献   

20.
As a fundamental subject in fluid mechanics, sophisticated cavity flow patterns due to the movement of multi-lids have been routinely analyzed by the computational fluid dynamics community. Unlike those reported computational studies that were conducted using more conventional numerical methods, this paper features employing the multiple-relaxation-time (MRT) lattice Boltzmann method (LBM) to numerically investigate the two-dimensional cavity flows generated by the movements of two adjacent lids. The obtained MRT-LBM results reveal a number of important bifurcation flow features, such as the symmetry and steadiness of cavity flows at low Reynolds numbers, the multiplicity of stable cavity flow patterns when the Reynolds number exceeds its first critical value, as well as the periodicity of the cavity flow after the second critical Reynolds number is reached. Detailed flow characteristics are reported that include the critical Reynolds numbers, the locations of the vortex centers, and the values of stream function at the vortex centers. Through systematic comparison against the simulation results obtained elsewhere by using the lattice Bhatnagar–Gross–Krook model and other numerical schemes, not only does the MRT-LBM approach exhibit fairly satisfactory accuracy, but also demonstrates its remarkable flexibility that renders the adjustment of its multiple relaxation factors fully manageable and, thus, particularly accommodates the need of effectively investigating the multiplicity of flow patterns with complex behaviors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号