首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为方便计算托卡马克磁场分布,建立了一些二维解析铁芯模型。由于前提假设的不同而给磁场分布的计算带来了不同的边界条件,因而得到的磁场分布计算结果与实际情况有所偏差。为了获得铁芯托卡马克的极向磁场三维分布,建立了带铁芯的极向磁场线圈三维数值模型,计算铁芯托卡马克的三维磁场,与不同铁芯模型的磁场计算结果进行比较,并且研究铁芯托卡马克的三维磁场的极向分量在环向上的不对称性。  相似文献   

2.
For simplifying the calculation the magnetic distribution on tokamak, some two-dimensional analytic models including the effect of the iron core were established, such as the infinite long iron core model and the spool model. The assumptions of these two-dimensional analytic models lead to different results with the actual magnetic field due to the distinctive boundary condition. In order to accurately calculate the three-dimensional magnetic field distribution in the tokamak with iron core, a three-dimensional numerical finite element model was established based on J-TEXT tokamak. In two conditions, where the total toroidal current is nonzero or zero respectively, more comparison were carried out between the derived results of two-dimensional models and the results at different toroidal positions in three-dimensional models. Furthermore, the toroidal asymmetry of the magnetic field distribution of the three-dimensional model of tokamak with iron core was investigated. The results indicate that the three-dimensional construction of iron core causes the toroidal asymmetric poloidal magnetic field and the difference between the two- and three-dimensional models in the condition with total current of nonzero. However, in the condition with total current of zero, the intensity of toroidal asymmetric is reduced and the difference between the two- and three-dimensional models is smaller.  相似文献   

3.
The effect of plasma with toroidal rotation on the resistive wall modes in tokamaks is studied numerically. An eigenvalue method is adopted to calculate the growth rate of the modes for changing plasma resistivity and plasma density distribution, as well as the diffusion time of magnetic field through the resistive wall. It is found that the resistive wall mode can be suppressed by the toroidal rotation of the plasma. Also, the growth rate of the resistive wall mode decreases when the edge plasma density is the same as the core plasma density, but it only changes slightly with the plasma resistivity.  相似文献   

4.
The mechanisms for anomalous transport across the magnetic field are investigated in a toroidal magnetized plasma. The role of plasma instabilities and macroscopic density structures (blobs) is discussed. Examples from a scenario with open magnetic field lines are shown. A transition from a main plasma region into a loss region is reproduced. In the main plasma, which includes particle and heat source locations, the transport is dominated by the fluctuation-induced particle and heat flux associated with a plasma instability. On the low-field side, the cross-field transport is ascribed to the intermittent ejection of macroscopic blobs propagating toward the outer wall. It is shown that instabilities and blobs represent fundamentally different mechanisms for cross-field transport.  相似文献   

5.
The superconducting tokamak Tore Supra will be equipped with an actively cooled toroidal pump limiter (TPL), in the framework of the CIEL (Composants Internes Et Limiteurs) project, dedicated to plasma facing component design for steady state operation. The TPL is equipped with throats, located only on the high field side, for particle collection allowing the control of plasma density which is essential for long plasma discharges. The present design work of the CIEL includes a biasing system in order to enhance the particle pumping. A fluid model, based on the classical fluid equation, is used to estimate the effects of the electric field on the particle flows in the Scrape-Off Layer (SOL). The modifications of the density, the particle flow (toroidal and poloidal) and the position of the stagnation point are discussed as a function of the bias voltage. The model clearly illustrates the different resulting effects on particle pumping for a divertor and a limiter configuration which are designed respectively for poloidal or parallel particle collection. The model is used to interpret the ALT-biasing experiments recently carried out on TEXTOR-94. The pumping capability is shown to be improved by about (15–20)% for positive biasing while the experimental measurements of parallel Mach number are reproduced as a function of the applied voltage. The e-folding length of the edge density in the SOL is also shown to increase from 1.5 to about 2.0 cm for a biased voltage of −400 to 400 V, respectively, in accordance with the model. Finally, the model is used to extrapolate the TEXTOR-94 results to CIEL suggesting that pumping speed enhancement of 25 to 30% may be obtained. Partner in Trilateral Euregio Cluster Partner in Trilateral Euregio Cluster Presented at the Workshop on Role of Electric Fields in Plasma Confinement and Exhaust, Budapest, 18–19 June 2000.  相似文献   

6.
A zonal magnetic field is found in a toroidal plasma. The magnetic field has a symmetric bandlike structure, which is uniform in the toroidal and poloidal directions and varies radially with a finite wavelength of mesoscale, which is analogous to zonal flows. A time-dependent bicoherence analysis reveals that the magnetic field should be generated by the background plasma turbulence. The discovery is classified as a new kind of phenomenon of structured magnetic field generation, giving insight into phenomena such as dipole field generation in rotational planets.  相似文献   

7.
We report the first direct measurement of the internal magnetic field structure associated with a 3D helical equilibrium generated spontaneously in the core of an axisymmetric toroidal plasma containment device. Magnetohydrodynamic equilibrium bifurcation occurs in a reversed-field pinch when the innermost resonant magnetic perturbation grows to a large amplitude, reaching up to 8% of the mean field strength. Magnetic topology evolution is determined by measuring the Faraday effect, revealing that, as the perturbation grows, toroidal symmetry is broken and a helical equilibrium is established.  相似文献   

8.
Evidences of internal particle transport barriers have been observed in plasma discharges with reversed plasma flow. To investigate the influence of the radial electric field profile on these barriers, we apply a drift wave map that describe the plasma particle transport and allows the integration of particle drift in the presence of a given electrostatic turbulence spectrum. With this procedure we show that transport barriers due to the shearless flow invariant lines are created inside the plasma. Moreover, by varying the radial electric field profile, we observe the formation and destruction of internal transport barriers constituted by shearless invariant lines, as well as its effects on the transport in the map's phase space. Applicability of our results are discussed for the Texas Helimak, a toroidal plasma device in which the radial electric field can be changed by application of bias potential.  相似文献   

9.
本工作描述我们编制的零维三流体粒子和功率平衡的等离子体动力学时关模拟程序。在物理上我们把等离子体动力学与新经典轮运理论结果结合起来,通过辅助加热、燃料粒子注入速率和纵场纹波控制堆芯等离子体燃烧。数值结果表明,通过控制完全可以实现堆芯等离子体的稳定燃烧和排灰要求。  相似文献   

10.
Recently, plasmas exceeding 4 min have been obtained with lower hybrid current drive (LHCD) in Tore Supra. These LHCD plasmas extend for over 80 times the resistive current diffusion time with zero loop voltage. Under such unique conditions the neoclassical particle pinch driven by the toroidal electric field vanishes. Nevertheless, the density profile remains peaked for more than 4 min. For the first time, the existence of an inward particle pinch in steady-state plasma without toroidal electric field, much larger than the value predicted by the collisional neoclassical theory, is experimentally demonstrated.  相似文献   

11.
Experiments have been performed on filling a stellarator with a noncurrent-carrying laser-produced plasma. Simultaneous plasma production by means of pulsed laser beams at four separate positions on the toroidal magnetic axis has been found to drastically enhance the trapping efficiency of produced plasma by stellarator field, to as high as 50 percent in contrast with about 10 percent in the case of plasma production at one position. This figure of 50 percent could be further improved to nearly 75 percent by spatially isotropic plasma productions which could not be realized in the present experiments owing to technical restrictions on the stellarator employed. The enhancement of trapping efficiency may be attributed to the reduction of toroidal plasma drift due to rotational transform coming into effect earlier in the multiposition production case. Some approximate theoretical analyses and considerations on toroidal drift motion of laser-produced plasma stream within stellarator field have also been presented, and the theoretical prediction on these analyses appears to be consistent with experimental results obtained.  相似文献   

12.
旋转和旋转剪切能抑制磁流体不稳定性和增强等离子体约束.低杂波电流驱动作为未来聚变堆上可能的旋转驱动手段,探索低杂波在现有托卡马克装置上驱动等离子体旋转的驱动机制,可以为未来的聚变堆上旋转预测提供重要参考.在东方超环托卡马克装置上,早期发现了2.45 GHz的低杂波能有效驱动等离子体旋转的现象,认为是边界旋转的改变导致芯部旋转的同电流方向的增加造成的.更高频率下4.6 GHz低杂波电流驱动可以更有效地驱动同电流方向的等离子体旋转.本论文分析在欧姆背景等离子体下,不同功率的低杂波对等离子体环向旋转的影响,研究安全因子剖面变化对环向旋转的关系,利用功率调制获得了低杂波驱动旋转实验中的环向动量输运系数变化情况,发现环向动量扩散系数(χφ)、环向动量箍缩系数(Vpinch)的数值大小趋势是从芯部向靠外的区域逐渐变大.这与低杂波驱动环向旋转时,环向旋转速度由靠外的区域向芯部传递的特性吻合.  相似文献   

13.
Measurement of the plasma potential in the core of MST marks both the first interior potential measurements in an RFP, as well as the first measurements by a Heavy Ion Beam Probe (HIBP) in an RFP. The HIBP has operated with (20-110) keV sodium beams in plasmas with toroidal currents of (200-480) kA over a wide range of densities and magnetic equilibrium conditions. A positive plasma potential is measured in the core, consistent with the expectation of rapid electron transport by magnetic fluctuations and the formation of an outwardly directed ambipolar radial electric field. Comparison between the radial electric field and plasma flow is underway to determine the extent to which equilibrium flow is governed by E×B. Measurements of potential and density fluctuations are also in progress.Unlike HIBP applications in tokamak plasmas, the beam trajectories in MST (RFP) are both three-dimensional and temporally dynamic with magnetic equilibrium changes associated with sawteeth. This complication offers new opportunity for magnetic measurements via the Heavy Ion Beam Probe (HIBP). The ion orbit trajectories are included in a Grad-Shafranov toroidal equilibrium reconstruction, helping to measure the internal magnetic field and current profiles. Such reconstructions are essential to identifying the beam sample volume locations, and they are vital in MST's mission to suppress MHD tearing modes using current profile control techniques. Measurement of the electric field may be accomplished by combining single point measurements from multiple discharges, or by varying the injection angle of the beam during single discharges.The application of an HIBP on MST has posed challenges resulting in additional diagnostic advances. The requirement to keep ports small to avoid introducing magnetic field perturbations has led to the design and successful implementation of cross-over sweep systems. High levels of ultraviolet radiation are driving alternative methods of sweep plate operation. While, substantial levels of plasma flux into the HIBP diagnostic chambers has led to the use of magnetic plasma suppression.  相似文献   

14.
The dominant particle loss from an electron cyclotron resonance discharge plasma in a simple toroidal configuration is ascribed to the E × B drift due to the vertical electric field produced by the electrons' toroidal drift. The electron density is increased by adding a small vertical field. This is explained by the electron flow along the line of force canceling the toroidal drift, resulting in reduction of the E × B drift.  相似文献   

15.
Cryogenic hydrogen isotope pellets are being used for introducing fuel particles into the plasma interior in magnetic confinement fusion experiments. The spatial and the time evolution of the initially low-temperature, high-density particle clouds forming around such pellets are considered, with particular attention given to such physical processes as heating of the clouds by the energy fluxes carried by incident plasma particles, gas-dynamic expansion with j× B-produced deceleration in the transverse direction, finite-rate ionization and recombination processes, and magnetic field convection and diffusion. While the dynamic processes associated with the ionization and radial confinement processes are characterized by the relatively short Alfven time scale (μs range), the subsequent phase of axial expansion is associated with a notably larger hydrodynamic time scale defined by the heat input and gas-dynamic expansion rates (ms range). Data stemming from experimental measurements in toroidal confinement machines are compared with results of model calculations. Some similarities with extraterrestrial plasma scenarios, such as the earlier magnetospheric barium release experiments, are discussed  相似文献   

16.
Three-dimensional (3D) relativistic electromagnetic subcycle solitons were observed in 3D particle-in-cell simulations of an intense short-laser-pulse propagation in an underdense plasma. Their structure resembles that of an oscillating electric dipole with a poloidal electric field and a toroidal magnetic field that oscillate in phase with the electron density with frequency below the Langmuir frequency. On the ion time scale, the soliton undergoes a Coulomb explosion of its core, resulting in ion acceleration, and then evolves into a slowly expanding quasineutral cavity.  相似文献   

17.
Neoclassical transport in a toroidal plasma with finite ion orbits is studied, including for the first time the self-consistent radial electric field. Using a low-noise deltaf particle simulation, we demonstrate that a deep electric-field well develops in a region with a steep density gradient, because of the self-collision-driven ion flux. We find that the electric field agrees with the standard neoclassical expression, when the toroidal rotation is zero, even for a steep density gradient. Ion thermal transport is modified by the electric-field well in a way which is consistent with the orbit squeezing effect, but smoothed by the finite orbits.  相似文献   

18.
Anomalous momentum transport has been observed in Alcator C-Mod tokamak plasmas through analysis of the time evolution of core impurity toroidal rotation velocity profiles. Following the L-mode to EDA (enhanced D(alpha)) H-mode transition, the ensuing cocurrent toroidal rotation velocity, which is generated in the absence of any external momentum source, is observed to propagate in from the edge plasma to the core. The steady state toroidal rotation velocity profiles are relatively flat and the momentum transport can be simulated with a simple diffusion model. Velocity profiles during edge localized mode free (ELM-free) H-modes are centrally peaked, which suggests the addition of inward momentum convection. In all operating regimes the observed momentum diffusivities are much larger than the neoclassical values.  相似文献   

19.
The dielectric permittivity tensor elements of a rotating cold collisionless plasma spheroid in an external magnetic field with toroidal and axial components are obtained. The effects of inhomogeneity in the densities of charged particles and the initial toroidal velocity on the dielectric permittivity tensor and field equations are investigated. The field components in terms of their toroidal components are calculated and it is shown that the toroidal components of the electric and magnetic fields are coupled by two differential equations. The influence of thermal and collisional effects on the dielectric tensor and field equations in the rotating plasma spheroid are also investigated. In the limiting spherical case, the dielectric tensor of a stationary magnetized collisionless cold plasma sphere is presented.  相似文献   

20.
D Bora  K Satyanarayana  V N Rai 《Pramana》1986,27(4):549-561
Low temperature plasma parameters in a toroidal magnetic field are measured. The effect of an externally applied perpendicular electric field on the plasma parameters is studied. The lifetime of the plasma is measured in the presence and absence of the RF electric field. Decrease in the plasma lifetime in the presence of RF field is attributed to detrapping of the primary electrons to a larger volume. Plasma lifetime increases when a small vertical magnetic field is added to the toroidal magnetic field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号