首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A new technique is described for dilatometry under high pressure. The technique is based on optical interferometry and is analogous to measuring the thickness of thin, nonabsorbing films and coatings. The procedure is demonstrated for the well-characterized system of n-pentane sorption by polyisobutylene, and then results for the dilation of polycarbonate by the sorption of carbon dioxide are presented. The dilation of polycarbonate by CO2 is nearly linear with concentration; the partial molar volume of CO2 decreases slightly with increasing pressure. This result indicates that all sorbed CO2 molecules contribute equally to the dilation of the polymer matrix and that none reside in microvoids or in preexisting free-volume elements which do not contribute to volume expansion of the polymer.  相似文献   

2.
The dilation of low-density polyethylene accompanied by the sorption of CO2 was measured by microscopy under pressures up to 50 atm at temperatures from 25 to 55°C. The dilatometry measurement, which is also applied to the determination of the thermal expansion coefficient, is directly performed by a cathetometer. The dilation of LDPE by sorbed CO2 is linear with concentration. The buoyancy correction is described for the CO2 sorption isotherms in LDPE. The partial molar volume of CO2 in LDPE, calculated from the dilation and the sorption isotherms, is almost independent of temperature.  相似文献   

3.
4.
Over the past years, the equilibrium sorption of gases in polymers has been intensively studied. Mostly, glassy polymers were investigated because of their excellent selective mass transport properties. This work does not focus on the equilibrium sorption but on the kinetics to reach the equilibrium. We developed a new experimental method measuring the sorption-induced dilation kinetics of a polymer film. Carbon dioxide and glassy, aromatic polyimides were chosen as model systems. Low-pressure experiments demonstrate that the measured dilation kinetics represent the sorption kinetics. A significant delay between the sorption and dilation kinetics is based on the fact that dilation kinetics occurs simultaneously with the concentration increase in the center of the polymer film. High-pressure experiments reveal significant differences in dilation kinetics compared to low-pressure experiments. Generally, three regimes can be distinguished in the dilation kinetics: a first, fast volume increase followed by two much slower regimes of volume increase. The magnitude of fast and slow dilation kinetics strongly depends on the swelling history of the polymer sample. The results of the experiments are analyzed in the light of a model relating the fast dilation kinetics to a reversible “Fickian” dilation and the slower dilation kinetics to an irreversible, relaxational dilation. © 1995 John Wiley & Sons, Inc.  相似文献   

5.
This study presents the synthesis of microporous polystyrene particles and the potential use of these materials in CO(2) capture for biogas purification. Highly cross-linked polystyrene particles are synthesized by the emulsion copolymerization of styrene (St) and divinylbenzene (DVB) in water. The cross-link density of the polymer is varied by altering the St/DVB molar ratio. The size and the morphology of the particles are characterized by scanning and transmission electron microscopy. Following supercritical point drying with carbon dioxide or lyophilization from benzene, the polystyrene nanoparticles exhibit a significant surface area and permanent microporosity. The dried particles comprising 35 mol % St and 65 mol % DVB possess the largest surface area, ~205 m(2)/g measured by Brunauer-Emmett-Teller and ~185 m(2)/g measured by the Dubinin-Radushkevich method, and a total pore volume of 1.10 cm(3)/g. Low pressure measurements suggest that the microporous polystyrene particles exhibit a good separation performance of CO(2) over CH(4), with separation factors in the range of ~7-13 (268 K, CO(2)/CH(4) = 5/95 gas mixture), which renders them attractive candidates for use in gas separation processes.  相似文献   

6.
The preparation of microcellular polystyrene (PS), lightly sulfonated polystyrene (SPS), zinc‐neutralized lightly sulfonated polystyrene (ZnSPS), and blends of PS/SPS and PS/ZnSPS via supercritical CO2 was carried out with the pressure‐quench process. Both higher foaming temperature and lower pressure result in larger cell sizes, lower cell densities, and lower relative density for microcellular ionomers and blends as for microcellular PS. The difference among various microcellular samples is the change of cell size with the sample composition. The cell size decreases in the sequence from SPS, through PS/SPS blends, PS and PS/ZnSPS blends, to ZnSPS. The diffusivity of CO2 in samples also decreases in the sequence from SPS, through PS/SPS blends, PS and PS/ZnSPS blends, to ZnSPS. For this series of samples with similar structure and identical solubility of CO2, the varying diffusivity is responsible for the difference of cell sizes. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 368–377, 2003  相似文献   

7.
The dispersion polymerization of styrene in supercritical CO2 utilizing poly(1,1-dihydroperfluorooctyl acrylate) (p-FOA) as a polymeric stabilizer was investigated as well as poly(1,1-dihydroperfluorooctyl methacrylate) (p-FOMA). The resulting high yield (>85%) of spherical and relatively uniform polystyrene (PS) particles with micron-size range (2.9–9.6 µm) was formed for 40 h at 370 bar using various amounts of p-FOA and p-FOMA as a stabilizer with good stability until the end of the reaction. The particle diameter was shown to be dependent on the weight percent of added stabilizer. Previously, we reported that p-FOA was not effective for the dispersion polymerization of styrene as a stabilizer. Here, we find that p-FOA can indeed be an effective stabilizer for the dispersion polymerization of styrene in supercritical CO2, but the pressure necessary to achieve good stability is higher than pressure used by us previously. This study suggests the possibility that fluorinated acrylic homopolymers are effective for the dispersion polymerization of various kinds of monomers as a stabilizer. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 2429–2437, 1999  相似文献   

8.
The crystallization behavior of miscible syndiotactic polystyrene (sPS) and atactic polystyrene (aPS) blends with different sPS/aPS weight ratios was investigated in supercritical CO2 by using Fourier‐transform infrared spectroscopy, differential scanning calorimetry, and wide‐angle X‐ray diffraction. Supercritical CO2 and aPS exhibited different effects on the conformational change of sPS and competed with each other. Increasing the content of amorphous aPS in the blends made its effect on the conformational change of sPS gradually surpass that of supercritical CO2. Supercritical CO2 favored the formation of the helical conformation of sPS in lower temperature range and the all trans planar conformation in higher temperature range, instead of forming the latter one only in higher temperature range in ambient atmosphere. However, increasing aPS content in the blends pushed the range for forming the helical conformation to lower temperature and made the all trans planar conformation dominant in aPS/sPS 25/75 blend after treating in supercritical CO2 above 60 °C. The all trans planar zigzag conformation was more favorable than the helical conformation after mixing aPS in sPS in supercritical CO2. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 1755–1764, 2007  相似文献   

9.
Glass transition in the system poly(methyl methacrylate)/compressed gas was studied as a function of the gas pressure p using a high-pressure Tian-Calvet heat flow calorimeter. Measurements were made on PMMA-CH4-C2H4, and ;-CO2 at pressures to 200 atm. All three gases plasticize the polymer leading to depression of the glass transition temperature Tg. Trends in the Tg depression were the same as those reported for the solubility of these gases in PMMA; the higher the solubility the larger the depression in Tg. CO2 was found to be the most effective plasticizer producing a depression of about 40°C at a pressure of about 37 atm. In the low-pressure limit, the pressure coefficient of the glass transition temperature (dTg/dp) was found to be about −0.2°C atm-1 for PMMA-CH4, the same as that observed for polystyrene-CH4. For PMMA-C2H4, the pressure coefficient was −0.7°C atm-1, which is lower than the value of −0.9°C atm-1 observed for PS-C2H4. The pressure coefficient for PMMA-CO2 was found to be about −1.2°C atm-1, which is larger than the value of −0.9°C atm-1 observed for PS-CO2. © 1996 John Wiley & Sons, Inc.  相似文献   

10.
The diffusion, solubility, and permeability behavior of oxygen and carbon dioxide were studied in amorphous and semicrystalline syndiotactic polystyrene (s‐PS). The crystallinity was induced in s‐PS by crystallization from the melt and cold crystallization. Crystalline s‐PS exhibited very different gas permeation behavior depending on the crystallization conditions. The behavior was attributed to the formation of different isomorphic crystalline forms in the solid‐state structure of this polymer. The β crystalline form was virtually impermeable for the transport of oxygen and carbon dioxide. In contrast, the α crystalline form was highly permeable for the transport of oxygen and carbon dioxide. High gas permeability of the α crystals was attributed to the loose crystalline structure of this crystalline form containing nanochannels oriented parallel to the polymer chain direction. A model describing the diffusion and permeability of gas molecules in the composite permeation medium, consisting of the amorphous matrix and the dispersed crystalline phase with nanochannels, was proposed. Cold crystallization of s‐PS led to the formation of a complex ordered phase and resulted in complex permeation behavior. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 2519–2538, 2001  相似文献   

11.
Free volume of polystyrene films treated with supercritical carbon dioxide (SCCO 2) were examined by positron annihilation lifetime spectroscopy. Variation of the free volume sizes after the SCCO 2 treatment due to the release of trapped CO 2 and structural relaxation of the polymer was observed. After 500 h from the depressurization, the free volume of the treated films free from CO 2 was approximately 0.306 nm in radius and much larger than that of the untreated films of approximately 0.295 nm in radius due to the freezing of the swollen structure caused by the large solubility of CO 2.  相似文献   

12.
The choice of plasma gas can determine the interaction between material and plasma and therefore the applications of the treated materials. Nitrogen plasma can integrate functional groups such as primary amines and carbon dioxide plasma can incorporate carboxylic groups on the surface of polymers. For specific adhesion such as bio‐adhesion, polar groups must be attached to the surface to enhance bio‐film formation but the acidic or basic character also controls the adhesion mechanism. Nitrogen and carbon dioxide plasmas are chosen to treat the surface of polystyrene and to show the effects of different functionalizations, i.e. attachment of acid or basic groups and degradation are compared in the present work. Nitrogen‐containing plasma induces mainly weak degradation at a rate of ~0.13 µg cm?2s?1. The roughness of the treated surface remains mostly unchanged. Functionalization leads to amino group attachment at a concentration of 1.2 sites nm?2. We found that carbon dioxide plasma treatment shows more drastic degradation with a rate three times higher than that of nitrogen plasma and can create more functional groups (4.5 sites nm?2) at mild plasma treatment. However, the roughness of the surface is altered. In both cases the aromatic groups are degraded through the plasma treatment (again this is more evident with the CO2 plasma) and the induced functionalization was shown to be quick (the upper monolayer of polystyrene film can be functionalized rapidly). Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

13.
The surface tension of polymers in a supercritical fluid is one of the most important physicochemical parameters in many engineering processes, such as microcellular foaming where the surface tension between a polymer melt and a fluid is a principal factor in determining cell nucleation and growth. This paper presents experimental results of the surface tension of polystyrene in supercritical carbon dioxide, together with theoretical calculations for a corresponding system. The surface tension is determined by Axisymmetric Drop Shape Analysis-Profile (ADSA-P), where a high pressure and temperature cell is designed and constructed to facilitate the formation of a pendent drop of polystyrene melt. Self-consistent field theory (SCFT) calculations are applied to simulate the surface tension of a corresponding system, and good qualitative agreement with experiment is obtained. The physical mechanisms for three main experimental trends are explained by using SCFT, and none of the explanations quantitatively depend on the configurational entropy of the polymer constituents. These calculations therefore rationalize the use of simple liquid models for the quantitative prediction of surface tensions of polymers. As pressure and temperature increase, the surface tension of polystyrene decreases. A linear relationship is found between surface tension and temperature, and between surface tension and pressure; the slope of surface tension change with temperature is dependent on pressure.  相似文献   

14.
In this study, sorption and diffusion of carbon dioxide (CO2) in wood‐fiber/polystyrene composites were investigated. The effects of gas pressure and fiber content on the solubility and diffusion coefficients were evaluated. A statistical analysis indicated that pressure is more important than fiber content in determining the solubility and diffusivity of CO2. An increase in saturation pressure causes an increase in the solubility and diffusion coefficients, whereas inclusion of the fibers decreases both of these properties. Models were developed to predict the uptake and diffusion coefficients of CO2 in the composite samples as functions of pressure and fiber content. A theoretical model based on Henry's law and the Langmuir equation compared favorably to the experimental data for CO2 solubility. This dual mode model also described both the transient sorption and desorption data, but only if the concentration‐dependent value of diffusivity was treated as a history‐dependent parameter. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 723–735, 2002  相似文献   

15.
The permeability and time lag at pressures below 1 atm were measured for carbon dioxide in five polystyrene samples with different molecular weights at 25 to 40°C. The apparent permeability coefficient decreases with increasing carbon dioxide pressure and also decreases with increasing molecular weight of polystyrene, whereas the apparent diffusion coefficient calculated from time lag increases with pressure and is independent of molecular weight. Parameters for the partial-immobilization model were determined from the apparent diffusion and permeation coefficients by using a nonlinear least-squares optimization program without using sorption data. The results suggest that the void-saturation constant CH decreases as the molecular weight of the polymer increases or as the chain-end free volume decreases. The significance of these observation and their interpretation is discussed in terms of free-volume theory for glassy polymers.  相似文献   

16.
The sorption and transport properties of CO2 in miscible PS/PVME blends at 20°C are reported as a function of pressure from 1 to 15 atm. The complex shape of isotherms for glassy blends and the concentration-dependent diffusion coefficient for rubbery blends reveal a plasticization by sorbed CO2. The significant depression in Tg has to be taken into account in the analysis of the sorption data. Diffusion coefficient for CO2 passes through a minimum when plotted against the blend composition. Such a behavior can be quantitatively related to the negative volume mixing of the PS/PVME system in the framework of the theories based on unoccupied volume. © 1996 John Wiley & Sons, Inc.  相似文献   

17.
The synthesis of polystyrene microspheres was achieved by the dispersion polymerization of styrene in supercritical carbon dioxide using azobisisobutylonitrile (AIBN) and a poly(dimethylsiloxane) (PDMS)-based macroazoinitiator, VPS-1001. VPS-1001 contained seven to nine molecules of the azo groups and the PDMS blocks with a molecular weight of 10,000 per molecule. The polymerization in the presence of both VPS-1001 and AIBN produced polystyrene microspheres with a diameter below 4 μm in over 85% yields, whereas the polymerization with VPS-1001 in the absence of AIBN provided a nonspecific polystyrene in only 20% yield. The particle size decreased as a result of increasing the concentration of VPS-1001. It was confirmed that the polystyrene particles were stabilized by the PDMS-block-polystyrene formed through the polymerization initiated by VPS-1001 because the polymerization using a PDMS homopolymer provided nonspecific polystyrene as a precipitate during the polymerization.  相似文献   

18.
Zirconium oxide is active for photoreduction of gaseous carbon dioxide to carbon monoxide with hydrogen. A stable surface species arises under the photoreduction of CO2 on zirconium oxide, and it is identified as surface formate by infrared spectroscopy. Adsorbed CO2 is converted to formate by photoreaction with hydrogen. The surface formate is a true reaction intermediate since CO is formed by the photoreaction of formate and CO2; surface formate works as a reductant of carbon dioxide to yield carbon monoxide. The dependence on the wavelength of irradiation light shows that a bulk ZrO2 is not a photoactive species. When ZrO2 adsorbs CO2 a new band appears in photoluminescence excitation spectrum. The photoactive species in the reaction that CO2+H2 yields HCOO is presumably formed by the adsorption of CO2 on ZrO2 surface. Hydrogen molecules play a role to supply an atomic hydrogen. Therefore, methane molecules can also be used as a reductant of carbon dioxide.  相似文献   

19.
New experimental results for the solubility of nitrogen and carbon dioxide in polystyrene are reported, accompanied by data on the change in volume of the polymer caused by the sorption process. The two phenomena were measured simultaneously with a combined technique, in which the quantity of penetrating fluid introduced into the system was evaluated by pressure‐decay measurements in a calibrated volume, whereas a vibrating‐wire force sensor was employed for weighing the polymer sample during sorption inside of the high‐pressure equilibrium cell. The use of the two techniques was necessary because the effects of swelling and solubility could not be decoupled in a single gravimetric or pressure‐decay measurement. The sorption of nitrogen in polystyrene was studied along three isotherms from 313 to 353 K at pressures up to 70 MPa. The sorption of carbon dioxide was measured along four isotherms from 338 to 402 K up to 45 MPa. The results are compared with values from the literature when possible, although our data extend significantly the pressure ranges of the latter. The uncertainties affecting our measurements with nitrogen are 1 mg of N2/g of polystyrene in solubility and 0.1% of the volume of the polymer. For carbon dioxide, the uncertainties are 5 mg of N2/g of polystyrene and 0.5% respectively, carbon dioxide being about 1 order of magnitude more soluble than nitrogen. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 2063–2070, 2001  相似文献   

20.
The reaction of nitrogen dioxide with thin polystyrene films has been investigated at 35°C with different partial pressures of NO2 (0.1, 2, 15, 30, and 60 cm Hg) and at several temperatures (25, 35, 45 and 55°C). The films were thin enough (ca. 20 μ) so that the reaction was independent of the diffusion of gas into the polymer. The experimental results can be represented by a chain mechanism. The whole degradation process is controlled by the diffusion of polymer radicals out of cages. This diffusion in turn, is affected by the decrease in viscosity or decrease in weight-average molecular weight as degradation proceeds. This leads to an acceleration of the degradation process. A straight-line relationship between the logarithm of the reciprocal weight-average molecular weight and the logarithm of a reaction–time function was found. The dependence on the rate was substantiated by degrading polymer fractions. The energy of activation for the process is small, in agreement with a diffusion process for chain scission. Nitro and nitrite groups are incorporated along the backbone of polystyrene during exposure. The number of these polar side groups appears to pass through a maximum with time, as is evidenced by aggregation of polymer molecules in benzene solution only during the middle stage of the degradation. The final stage of the process is slowed down by retarder being produced. This retarder can be removed by reprecipitation of exposed polymer films. Degradation in solution is similar to that of films. Isotactic polystyrene shows less irregularities in its degradation curve than the atactic polymer. This is, presumably, due to its more homogeneous morphology, large molecular weight, and broader molecular size distribution. The plot of the degree of degradation versus time for the isotactic polymer can be satisfactorily approximated by a straight line.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号