首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 74 毫秒
1.
Following the idea of three‐wave resonant interactions of lower hybrid waves, it is shown that quantum‐modified lower hybrid (QLH) wave in electron–positron–ion plasma with spatial dispersion can decay into another QLH wave (where electron and positrons are activated, whereas ions remain in the background) and another ultra‐low frequency quantum‐modified ultra‐low frequency Lower Hybrid (QULH) (where ions are mobile). Quantum effects like Bohm potential and Fermi pressure on the lower hybrid wave significantly reshaped the dispersion properties of these waves. Later, a set of non‐linear Zakharov equations were derived to consider the formation of QLH wave solitons, with the non‐linear contribution from the QLH waves. Furthermore, modulational instability of the lower hybrid wave solitons is investigated, and consequently, its growth rates are examined for different limiting cases. As the growth rate associated with the three‐wave resonant interaction is generally smaller than the growth associated with the modulational instability, only the latter have been investigated. Soliton solutions from the set of coupled Zakharov and NLS equations in the quasi‐stationary regime have been studied. Ordinary solitons are an attribute of non‐linearity, whereas a cusp soliton solution featured by nonlocal nonlinearity has also been studied. Such an approach to lower hybrid waves and cusp solitons study in Fermi gas comprising electron positron and ions is new and important. The general results obtained in this quantum plasma theory will have widespread applicability, particularly for processes in high‐energy plasma–laser interactions set for laboratory astrophysics and solid‐state plasmas.  相似文献   

2.
The present investigation is concerned with the flexural and transversal wave motion in an infinite, transversely isotropic, thermoelastic plate by asymptotic method. The governing equations for the flexural and transversal motions have been derived from the system of three-dimensional dynamical equations of linear theory of coupled thermoelasticity. The asymptotic operator plate model for free vibrations; both flexural and transversal, in a homogenous thermoelastic plate leads to fifth degree and cubic polynomial secular equations, respectively, that governs frequency and phase velocity of various possible modes of wave propagation at all wavelengths. All the coefficients of differential operator have been expressed as explicit functions of the material parameters. The velocity dispersion equations for the flexural and transversal wave motion have been deduced from the three-dimensional analog of Rayleigh-Lamb frequency equation for thermoelastic plate waves. The approximations for long and short waves and expression for group velocity have also been derived. The thermoelastic Rayleigh-Lamb frequency equations for the considered plate are expanded in power series in order to obtain polynomial frequency and velocity dispersion relations whose equivalence is established with that of asymptotic method. The dispersion curves for phase velocity, group velocity and attenuation coefficient of various flexural and transversal wave modes are shown graphically for aluminum-epoxy material elastic and thermoelastic plates.  相似文献   

3.
A coupled pair of nonlinear equations for the amplitude modulated Langmuir wave and the associated low frequency electric potential wave have been derived by relaxing quasineutrality condition of the frequency motion. Solitary wave solutions exist. It is found that the small correction term due to ion pressure changes the amplitude of the solitary wave.  相似文献   

4.
To model physical phenomena more accurately, fractional order differential equations have been widely used. Investigating exact solutions of the fractional differential equations have become more important because of the applications in applied mathematics, mathematical physics, and other areas. In this work, by means of the trial solution method and complete discrimination system, exact traveling wave solutions of the conformable time-fractional Zakharov–Kuznetsov equation and conformable time-fractional Zoomeron equation have been obtained and also solutions have been illustrated. Finding exact solutions of these equations that are encountered in plasma physics, nonlinear optics, fluid mechanics, and laser physics can help to understand nature of the complex phenomena.  相似文献   

5.
何彩霞  简粤  祁秀英  薛具奎 《中国物理 B》2014,23(2):25202-025202
Parametric instabilities induced by the coupling excitation between the high frequency quantum Langmuir waves and the low frequency quantum ion-acoustic waves in single-walled carbon nanotubes are studied with a quantum Zakharov model. By linearizing the quantum hydrodynamic equations, we get the dispersion relations for the high frequency quantum Langmuir wave and the low frequency quantum ion-acoustic wave. Using two-time scale method, we obtain the quantum Zaharov model in the cylindrical coordinates. Decay instability and four-wave instability are discussed in detail. It is shown that the carbon nanotube's radius, the equilibrium discrete azimuthal quantum number, the perturbed discrete azimuthal quantum number, and the quantum parameter all play a crucial role in the instabilities.  相似文献   

6.
A direct algebraic method is introduced for constructing exact travelling wave solutions of nonlinear partial differential equations with complex phases. The scheme is implemented for obtaining multiple soliton solutions of the generalized Zakharov equations, and then new exact travelling wave solutions with complex phases are obtained. In addition, by using new exact solutions of an auxiliary ordinary differential equation, new exact travelling wave solutions for the generalized Zakharov equations are obtained.  相似文献   

7.
An investigation is made of the effect of a homogeneous plasma-vacuum narrow transition region on the nature of surface wave propagation along the vacuum channel boundary. Dispersion equations, taking into account the collision damping of surface waves in the region where the wave frequency is equal to LANGMUIR frequency have been obtained. The expressions for damping coefficients of surface waves have been found both for the plane and the cylindrical geometry. Transformation of surface waves into longitudinal oscillations in the transition layer is also obtained. For a period of time, determined by the transition layer width, the surface waves, caused by initial perturbation, have been demonstrated to transform into longitudinal oscillations concentrated in the plasma-vacuum transition layer and directed along the gradient of plasma density.  相似文献   

8.
The governing equation of wave motion of viscoelastic SWCNTs (single-walled carbon nanotubes) with surface effect under magnetic field is formulated on the basis of the nonlocal strain gradient theory. Based on the formulated equation of wave motion, the closed-form dispersion relation between the wave frequency (or phase velocity) and the wave number is derived. It is found that the size-dependent effects on the phase velocity may be ignored at low wave numbers, however, is significant at high wave numbers. Phase velocity can increase by decreasing damping or increasing the intensity of magnetic field. The damping ratio considering surface effect is larger than that without considering surface effect. Damping ratio can increase by increasing damping, increasing wave number, or decreasing the intensity of magnetic field.  相似文献   

9.
A dynamical system consisting of a multilevel atomic gas medium subject to an electromagnetic field is analyzed by the density-matrix equations of motion. All stochastic processes such as elastic and inelastic atomic collisions and spontaneous emission are described by a damping matrix. Analytical expressions for the density-matrix elements to any order of perturbation theory (without any multipolar and rotating wave approximations) are obtained by means of the Laplace-transform method in a diagonal representation of the damping matrix. Closed formulae for the high-order susceptibilities are derived.  相似文献   

10.
Increasing interest has been shown in the method of matched asymptotic expansions for the construction and solution of the equations of motion in general relativity. This paper discusses a simple model which can, in principle, be solved exactly. A comparison of the two solutions shows that the matched asymptotic expansion technique determines correctly the final damping rate and frequency (at least to fourth order in a small parameter), but the phase information is spurious.  相似文献   

11.
The damping decrement of Landau damping and the effect of thermal velocity on the frequency spectrum of a propagating wave in a bounded plasma column are investigated.The magnetized plasma column partially filling a cylindrical metallic tube is considered to be collisionless and non-degenerate.The Landau damping is due to the thermal motion of charge carriers and appears whenever the phase velocity of the plasma waves exceeds the thermal velocity of carriers.The analysis is based on a self-consistent kinetic theory and the solutions of the wave equation in a cylindrical plasma waveguide are presented using Vlasov and Maxwell equations.The hybrid mode dispersion equation for the cylindrical plasma waveguide is obtained through the application of appropriate boundary conditions to the plasma-vacuum interface.The dependence of Landau damping on plasma parameters and the effects of the metallic tube boundary on the dispersion characteristics of plasma and waveguide modes are investigated in detail through numerical calculations.  相似文献   

12.
The propagation of thermoelastic waves in homogeneous isotropic plate subjected to stress-free and rigid insulated and isothermal conditions is investigated in the context of conventional coupled thermoelasticity (CT), Lord-Shulman (LS), Green-Lindsay (GL), and Green-Nagdhi (GN) theories of thermoelasticity. Secular equations for the plate in closed form and isolated mathematical conditions for symmetric and skew-symmetric wave mode propagation in completely separate terms are derived. It is shown that the motion for SH modes gets decoupled from the rest of the motion and remains unaffected due to thermo-mechanical coupling and thermal relaxation effects. The phase velocities for SH modes have also been obtained. The results for coupled and uncoupled theories of thermoelasticity have been obtained as particular cases from the derived secular equations. At short wavelength limits the secular equations for symmetric and skew-symmetric waves in a stress-free insulated and isothermal plate reduce to Rayleigh surface waves frequency equations. Finally, the numerical solution is carried out for aluminum-epoxy composite material and the dispersion curves for symmetric and skew-symmetric wave modes are presented to illustrate and compare the theoretical results.  相似文献   

13.
This paper develops a three-dimensional analytical model of a fluid-loaded acoustic coating affixed to a rib-stiffened plate. The system is loaded by a plane wave that is harmonic both spatially and temporally. The model begins with Navier-Cauchy equations of motion for an elastic solid, which produces displacement fields that have unknown wave propagation coefficients. These are inserted into stress equations at the boundaries of the plate and the acoustic coating. These stress fields are coupled to the fluid field and the rib stiffeners with force balances. Manipulation of these equations develops an infinite number of indexed equations that are truncated and incorporated into a global matrix equation. This global matrix equation can be solved to determine the wave propagation coefficients. This produces analytical solutions to the systems’ displacements, stresses, and scattered pressure field. This model, unlike previously developed analytical models, has elastic behavior and thus incorporates higher order wave motion that makes it accurate at higher wavenumbers and frequencies. An example problem is investigated for three specific model results: (1) the dynamic response, (2) a sonar array embedded in the acoustic coating, and (3) the scattered pressure field. An expression for the high frequency limitation of the model is derived. It is shown that the ribs can have a significant impact on the structural acoustic response of the system.  相似文献   

14.
Jun Tao 《中国物理 B》2021,30(12):125202-125202
One-dimensional particle simulations have been conducted to study the interaction between a radio-frequency electrostatic wave and electrons with bouncing motion. It is shown that bounce resonance heating can occur at the first few harmonics of the bounce frequency (nωb,n=1,2,3,...). In the parameter regimes in which bounce resonance overlaps with Landau resonance, the higher harmonic bounce resonance may accelerate electrons at the velocity much lower than the wave phase velocity to Landau resonance region, enhancing Landau damping of the wave. Meanwhile, Landau resonance can increase the number of electrons in the lower harmonic bounce resonance region. Thus electrons can be efficiently heated. The result might be applicable for collisionless electron heating in low-temperature plasma discharges.  相似文献   

15.
An thin elastic steel plate is excited with a vibrator and its local velocity displays a turbulentlike Fourier spectrum. This system is believed to develop elastic wave turbulence. We analyze here the motion of the plate with a two-point measurement in order to check, in our real system, a few hypotheses required for the Zakharov theory of weak turbulence to apply. We show that the motion of the plate is indeed a superposition of bending waves following the theoretical dispersion relation of the linear wave equation. The nonlinearities seem to efficiently break the coherence of the waves so that no modal structure is observed. Several hypotheses of the weak turbulence theory seem to be verified, but nevertheless the theoretical predictions for the wave spectrum are not verified experimentally.  相似文献   

16.
Understanding the influence of the control system on the performance of vibratory gyroscopes is important during the design of such devices. The ability of the control system to reduce the effects of resonator imperfections, on the gyroscope performance, was investigated. The analysis of the control problem presented begins with equations of motion describing the dynamics of a resonator including frequency and damping imperfections. These equations were transformed to slowly varying parameters and averaged. The equations of motion, in this form, provide many insights into the dynamics of the resonator and suggest the control system functions required to effectively operate the resonator as an angular rate sensor. A phase-locked loop-based control system was designed, analyzed and implemented. The control system drives the resonator at resonance to a constant amplitude and nulls the rotation-induced vibrations. It was shown analytically that the first order effects of frequency imperfections can be eliminated by the control system. The effect of damping anisotropy is not reduced by the control system and this is expected to be the major source of error in the closed-loop system. Experimental measurements, of a piezoelectrically actuated and sensed resonator, over a temperature range of 60°C, showed that variation of the zero-rate offset was decreased by an order of magnitude by the force-to-rebalance control. The analytical and experimental results present a convincing argument for the use of force-to-rebalance control in vibratory gyroscopes.  相似文献   

17.
Utilizing the Timoshenko beam theory and applying Hamilton's principle, the bending vibration equations of an axially loaded beam with locally distributed internal damping of the Kelvin-Voigt type are established. The partial differential equations of motion are then discretized into linear second-order ordinary differential equations based on a finite element method. A quadratic eigenvalue problem of a damped system is formed to determine the eigenfrequencies of the damped beams. The effects of the internal damping, sizes and locations of damped segment, axial load and restraint types on the damping and oscillating parts of the damped natural frequency are investigated. It is believed that the present study is valuable for better understanding the influence of various parameters of the damped beam on its vibration characteristics.  相似文献   

18.
Discrete Darboux–Manakov–Zakharov systems possess two distinct Hamiltonian forms (by this term we mean that equations of motion are discrete time extensions of Hamiltonian equations of motion). In the framework of discrete-differential geometry one Hamiltonian form appears in a geometry of a circular net. In this paper a geometry of the second form is identified.  相似文献   

19.
In this paper the asymptotic method has been applied to investigate propagation of generalized thermoelastic waves in an infinite homogenous isotropic plate. The governing equations for the extensional, transversal and flexural motions are derived from the system of three-dimensional dynamical equations of linear theories of generalized thermoelasticity. The asymptotic operator plate model for extensional and flexural free vibrations in a homogenous thermoelastic plate leads to sixth and fifth degree polynomial secular equations, respectively. These secular equations govern frequency and phase velocity of various possible modes of wave propagation at all wavelengths. The velocity dispersion equations for extensional and flexural wave motion are deduced from the three-dimensional analog of Rayleigh-Lamb frequency equation for thermoelastic plate. The approximation for long and short waves along with expression for group velocity has also been obtained. The Rayleigh-Lamb frequency equations for the considered plate are expanded in power series in order to obtain polynomial frequency and velocity dispersion relations and its equivalence established with that of asymptotic method. The numeric values for phase velocity, group velocity and attenuation coefficients has also been obtained using MATHCAD software and are shown graphically for extensional and flexural waves in generalized theories of thermoelastic plate for solid helium material.  相似文献   

20.
In this paper, the famous Klein–Gordon–Zakharov (KGZ) equations are first generalized, and the new special types of KGZ equations with the positive fractional power terms (gKGZE) are presented. In order to derive exact solutions of the new special gKGZE, subsidiary higher-order ordinary differential equations (sub-ODEs) with the positive fractional power terms are introduced, and with the aid of the sub-ODE, exact solutions of four special types of the gKGZE are derived, which are the bell-type solitary wave solution, the algebraic solitary wave solution, the kink-type solitary wave solution and the sinusoidal travelling wave solution, provided that the coefficients of gKGZE satisfy certain constraint conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号