首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dihydro-1,2-oxazines 8 and 12-oxazines 12 are formed by the reaction of the nitronic acids of the adducts of α-nitroolefins and β-dicarbonyl compounds ( 6 ) by two ways: A ) The nitronic acids 6 are heated in a boiling solution of urea in ethanol or methanol. B ) The nitronic acids 6 are reduced with an aqueous solution of ammoniachloride and sodium sulfide. 1H-nmr and 13C-nmr investigations prove the constitutions. The mechanism is discussed.  相似文献   

2.
Synthesis, Structure, and Reactivity of η1‐ and η3‐Allyl Rhenium Carbonyls In (η3‐C3H5)Re(CO)4 one CO ligand can be substituted by PPh3, pyridine, isocyanide and benzonitrile. With 1,2‐bis(diphenylphosphino)ethylene, 1,1′‐bis(diphenylphosphino)ferrocene and 1,2‐bis(4‐pyridyl)ethane dinuclear ligand bridged complexes are obtained. The η3‐η1 conversion of the allyl ligand occurs on reaction of (η3‐C3H5)Re(CO)4 with the bidendate ligands 1,2‐bis(diphenylphosphino)ethane and 1,3‐bis(diphenylphosphino)propane and with 2,2′‐bipyridine (L–L) which gives the complexes (η1‐C3H5)Re(CO)3(L–L). By reaction of (η3‐C3H5)Re(CO)4 with bis(diphenylphosphino)methane the allyl group is protonated and under elemination of propene the complex (OC)3Re(Ph2PCHPPh2)(η1‐Ph2PCH2PPh2) ( 19 ) with a diphosphinomethanide ligand is formed. On heating solutions of (η3‐C3H5)Re(CO)4 and (η3‐C3H5)Re(CO)3(CN‐2,5‐Me2C6H3) ( 5 ) in methanol the methoxy bridged compounds Re4(CO)12(OH)(OMe)3 and Re2(CO)4(CN‐2,5‐Me2C6H3)4(μ‐OMe)2 ( 20 ) were isolated. The crystal structures of (η3‐C3H5)Re(CO)3(CNCH2SiMe3) ( 4 ), [(η3‐C3H5)(OC)3Re]2‐ (μ‐bis‐(diphenylphosphino)ferrocene) ( 8 ), (η1‐C3H5)Re(CO)3‐ (bpy) ( 14 ), of 19 , 20 and of (OC)3Re‐[Ph2P(CH2)3PPh2]Cl ( 16 ) were determined by X‐ray diffraction.  相似文献   

3.
By heating with iron powder at 120–150° some γ-bromo-α, β-unsaturated carboxylic methyl esters, and, less smothly, the corresponding acids, were lactonized to Δ7alpha;-butenolides with elimination of methyl bromide. The following conversions have thus been made: methyl γ-bromocrotonate ( 1c ) and the corresponding acid ( 1d ) to Δα-butenolide ( 8a ), methyl γ-bromotiglate ( 3c ) and the corresponding acid ( 3d ) to α-methyl-Δα-butenolide ( 8b ), a mixture of methyl trans- and cis-γ-bromosenecioate ( 7c and 7e ) and a mixture of the corresponding acids ( 7d and 7f ) to β-methyl-Δα-butenolide ( 8c ). The procedure did not work with methyl trans-γ-bromo-Δα-pentenoate ( 5c ) nor with its acid ( 5d ). Most of the γ-bromo-α, β-unsaturated carboxylic esters ( 1c, 7c, 7e and 5c ) are available by direct N-bromosuccinimide bromination of the α, β-unsaturated esters 1a, 7a and 5a ; methyl γ-bromotiglate ( 3c ) is obtained from both methyl tiglate ( 3a ) and methyl angelate ( 4a ), but has to be separated from a structural isomer. The γ-bromo-α, β-unsaturated esters are shown by NMR. to have the indicated configurations which are independent of the configuration of the α, β-unsaturated esters used; the bromination always leads to the more stable configuration, usually the one with the bromine-carrying carbon anti to the carboxylic ester group; an exception is methyl γ-bromo-senecioate, for which the two isomers (cis, 7e , and trans, 7d ) have about the same stability. The N-bromosuccinimide bromination of the α,β-unsaturated carboxylic acids 1b , 3b , 4b , 5b and 7b is shown to give results entirely analogous to those with the corresponding esters. In this way γ-bromocrotonic acid ( 1 d ), γ-bromotiglic acid ( 3 d ), trans- and cis-γ-bromosenecioic acid ( 7d and 7f ) as well as trans-γ-bromo-Δα-pentenoic acid ( 5d ) have been prepared. Iron powder seems to catalyze the lactonization by facilitating both the elimination of methyl bromide (or, less smoothly, hydrogen bromide) and the rotation about the double bond. α-Methyl-Δα-butenolide ( 8b ) was converted to 1-benzyl-( 9a ), 1-cyclohexyl-( 9b ), and 1-(4′-picoly1)-3-methyl-Δα-pyrrolin-2-one ( 9 c ) by heating at 180° with benzylamine, cyclohexylamine, and 4-picolylamine. The butenolide 8b showed cytostatic and even cytocidal activity; in preliminary tests, no carcinogenicity was observed. Both 8b and 9c exhibited little toxicity.  相似文献   

4.
Preparation and Characterization of α,ω-Dihydroperchloro Silanes Synthesis for the new compounds H(SiCl2)nH, n = 3?7 and HSi4Cl5 were described, starting from the perphenylated cyclosilanes. The new compounds were characterized and 1H- and 29Si-NMR spectra are discussed.  相似文献   

5.
Chiral Half‐sandwich Pentamethylcyclopentadienyl Rhodium(III) and Iridium(III) Complexes with Schiff Bases from Salicylaldehyde and α‐Amino Acid Esters [1] A series of diastereoisomeric half‐sandwich complexes with Schiff bases from salicylaldehyde and L‐α‐amino acid esters including chiral metal atoms, [(η5‐C5H5)(Cl)M(N,O‐Schiff base)], has been obtained from chloro bridged complexes [(η5‐C5Me5)(Cl)M(μ‐Cl)]2 (M = Rh, Ir). Abstraction of chloride from these complexes with Ag[BF4] or Ag[SO3CF3] affords the highly sensitive compounds [(η5‐C5Me5)M(N,O‐Schiff base]+X? (M = Rh, Ir; X = BF4, CF3SO3) to which PPh3 can be added under formation of [(η5‐C5Me5)M(PPh3)(N,O‐Schiff base)]+X?. The diastereoisomeric ratio of the complexes ( 1 ‐ 7 and 11 ‐ 12 ) has been determined from NMR spectra.  相似文献   

6.
Synthesis and IR. Spectroscopic Identification of Epimeric 3-Ethinyl-5α-cholestan-3-ols The syntheses of the 3β-ethinyl-5α-cholestan-3α-ols 2a, 2b, 2c and of the corresponding epimeric 3α-ethinyl-5 α-cholestan-3 β-ols 3a, 3b, 3c are described. Bands at 1000 cm?1 for the α-alcohols and at 1030 cm?1 for the β-alcohols are found to be useful for the IR. spectroscopic identification of epimeric 3-ethinyl-5α-cholestan-3-ols.  相似文献   

7.
Preparation and Characterization of Cationic η2-1-Butene and Acetonitrile Complexes The reaction of the species η5-C5H5M(CO)n-σ-C4H7 (M = Fe, Mo, W; n = 2, 3) with (C6H5)3CBF4 yielded – instead of the expected cationic butadiene complexes of the type [η5-CpM(CO)n?14-C4H6][BF4], which would have been formed in case of hydride cleavage – compounds of the type [η5-CpM(CO)n η2-C4H8][BF4], which were formed by protonation of the σ-C4H7 ligands. The reaction proceeded quantitatively. The BF4? anion can be substituted by other anions, such as ClO4?, B(C6H5)4?, PF4?, and [Cr(SCN)4(NH3)2]? in the complexes obtained. The mechanism of the reaction leading to the η2-bonded 1-butene complexes was determined by isotope experiments. In trying to recrystallize the butene complexes from acetonitrile the cationic complexes [η5-C5H5 Fe(CO)2CH3CN]BF4 and [η5-C5H5 M(CO)3CH3CN]BF4 were observed; the X-ray structure analysis of the former is reported.  相似文献   

8.
Complex Catalysis. XXXII. Synthesis and Characterization of η3-Allyl-, η3-Crotyl-, and η12-Cyclooct-4(Z)-en-1-yl-nickel(II)-bis(brenzcatechinato)borate and their Suitability as Catalysts for the Stereospecific Butadiene Polymerization By reaction of [(η3-C3H5)2Ni], [(η3-C4H7)2Ni], and [Ni(cycloocta-1,5-diene)2] with one equivalent bis(brenzcatechinato)boric acid HB(O2C6H4)2 in ether the complexes given in the title could be synthesized in good yields. The allyl complex [η3-C3H5NiB(O2C6H4)2] reacts with cycloocta-1,5-diene (COD) to give a cationic complex [η3-C3H5Ni(COD)]B(O2C6H4)2 and catalyses the 1,4-trans-polymerization of butadiene with an activity of ca. 150 ml C4H6/mol Ni · h and a selectivity of 78% under standard conditions at room temperature.  相似文献   

9.
Two new series of Boc‐N‐α,δ‐/δ,α‐ and β,δ‐/δ,β‐hybrid peptides containing repeats of L ‐Ala‐δ5‐Caa/δ5‐Caa‐L ‐Ala and β3‐Caa‐δ5‐Caa/δ5‐Caa‐β3‐Caa (L ‐Ala = L ‐alanine, Caa = C‐linked carbo amino acid derived from D ‐xylose) have been differentiated by both positive and negative ion electrospray ionization (ESI) ion trap tandem mass spectrometry (MS/MS). MSn spectra of protonated isomeric peptides produce characteristic fragmentation involving the peptide backbone, the Boc‐group, and the side chain. The dipeptide positional isomers are differentiated by the collision‐induced dissociation (CID) of the protonated peptides. The loss of 2‐methylprop‐1‐ene is more pronounced for Boc‐NH‐L ‐Ala‐δ‐Caa‐OCH3 (1), whereas it is totally absent for its positional isomer Boc‐NH‐δ‐Caa‐L ‐Ala‐OCH3 (7), instead it shows significant loss of t‐butanol. On the other hand, second isomeric pair shows significant loss of t‐butanol and loss of acetone for Boc‐NH‐δ‐Caa‐β‐Caa‐OCH3 (18), whereas these are insignificant for its positional isomer Boc‐NH‐β‐Caa‐δ‐Caa‐OCH3 (13). The tetra‐ and hexapeptide positional isomers also show significant differences in MS2 and MS3 CID spectra. It is observed that ‘b’ ions are abundant when oxazolone structures are formed through five‐membered cyclic transition state and cyclization process for larger ‘b’ ions led to its insignificant abundance. However, b1+ ion is formed in case of δ,α‐dipeptide that may have a six‐membered substituted piperidone ion structure. Furthermore, ESI negative ion MS/MS has also been found to be useful for differentiating these isomeric peptide acids. Thus, the results of MS/MS of pairs of di‐, tetra‐, and hexapeptide positional isomers provide peptide sequencing information and distinguish the positional isomers. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
Synthesis of Diastereo- and Enantioselectively Deuterated β,ε-, β,β-, β,γ- and γ,γ-Carotenes We describe the synthesis of (1′R, 6′S)-[16′, 16′, 16′-2H3]-β, εcarotene, (1R, 1′R)-[16, 16, 16, 16′, 16′, 16′-2H6]-β, β-carotene, (1′R, 6′S)-[16′, 16′, 16′-2H3]-γ, γ-carotene and (1R, 1′R, 6S, 6′S)-[16, 16, 16, 16′, 16′, 16′-2H6]-γ, γ-carotene by a multistep degradation of (4R, 5S, 10S)-[18, 18, 18-2H3]-didehydroabietane to optically active deuterated β-, ε- and γ-C11-endgroups and subsequent building up according to schemes \documentclass{article}\pagestyle{empty}\begin{document}${\rm C}_{11} \to {\rm C}_{14}^{C_{\mathop {26}\limits_ \to }} \to {\rm C}_{40} $\end{document} and C11 → C14; C14+C12+C14→C40. NMR.- and chiroptical data allow the identification of the geminal methyl groups in all these compounds. The optical activity of all-(E)-[2H6]-β,β-carotene, which is solely due to the isotopically different substituent not directly attached to the chiral centres, is demonstrated by a significant CD.-effect at low temperature. Therefore, if an enzymatic cyclization of [17, 17, 17, 17′, 17′, 17′-2H6]lycopine can be achieved, the steric course of the cyclization step would be derivable from NMR.- and CD.-spectra with very small samples of the isolated cyclic carotenes. A general scheme for the possible course of the cyclization steps is presented.  相似文献   

11.
Six α, β, β-trifluorostyrenes with the following substituents, viz., p-MeO, p-Me, m-Me, p-Cl, m-Cl, and m-CF3, were synthesized by the reaction of the corresponding Grignard reagents with tetrafluoroethylene in tetrahydrofuran. Similarly, α-and β-trifluoroethenylnaphthalenes were prepared. The substituent electronic effects on the 19F-NMR parameters were investigated for the trifluorostyrenes (I). Linear correlations between the Hammett σ constants and the following 19F-NMR parameters were established, namely, chemical shifts δ. (F1) and δ (F2), coupling constants J12, differences of chemical shifts Δδ3-1 (δ (F3)—δ(f1) or Δδ3-2. The results are consistent with previous expectations based on the simple concept of “distorted π-electron clouds”. Facts are presented which indicate that the Δδ3-1 (or Δδ3-2) values may serve as empirical measures of the degree of polarization of the π bonds of these fluoroolefins.  相似文献   

12.
Syntheses and Structures of η1‐Phosphaallyl, η1‐Arsaallyl, and η1‐Stibaallyl Iron Complexes [(η5‐C5Me5)(CO)2Fe–E(SiMe3)C(OSiMe3)=CPh2] (E = P, As, Sb) The reaction of equimolar amounts of [(η5‐C5Me5)(CO)2Fe–E(SiMe3)2] ( 1 a : E = P; 1 b : As; 1 c : Sb) and diphenylketene afforded the η1‐phosphaallyl‐, η1‐arsaallyl‐, and η1‐stibaallyl complexes [(η5‐C5Me5)(CO)2Fe–E(SiMe3)C(OSiMe3)=CPh2] ( 2 a : E = P; 2 b : As; 2 c : Sb). The molecular structures of 2 b and 2 c were elucidated by single crystal X‐ray analyses.  相似文献   

13.
The syntheses of a series of l‐methyl‐3‐aryl‐substituted titanocene and zirconocene dichlorides are reported. These complexes are synthesized by the reaction of 2‐ and 3‐methyl‐6, 6‐dimethylfulvenes (1:4) with aryllithium, followed by the reaction with TiCl4·2THF, ZrCl4 and (CpTiCl2)2O respectively, to give complexes 1–5. The complex [η5‐1‐methyl‐3‐(α, α‐dimethylbenzyl) cyclopentadienyl] titanium dichloride has been studied by X‐ray diffraction. The red crystal of this complex is monoclinic, space group P2t/C with unit cell parameters: a =6.973(6) × 10?1 nm, b =36.91(2) × 10?1 nm, c = 10.063(4) × 10?1 nm, α=β= γ = 93.35(5)°, V = 2584(5) × 10?3 nm3 and Z = 4. Refinement for 1004 observed reflections gives the final R of 0.088. There are four independent molecules per unit cell.  相似文献   

14.
Based on 13C-NMR. and other physico-chemical evidence, the structure of 11α, 11′α-dihydroxychaetocin ( 3 ) has been assigned to a new antibacterial and antimitotic metabolite, isolated from the fungus Verticillium tenerum.  相似文献   

15.
Thermolysis of the “all-cis” compound 1α-chloro-2α,3α-dimethylcyclopropane (A) at 550–607 K and 6–115 torr is a first-order homogeneous non-radical-chain process giving penta-1,3-diene (PD) and HCl as products. The Arrhenius parameters are log10A(sec?1) = 13.92 ± 0.08 and E = 199.6 ± 0.9 kJ/mol. The isomer with trans-methyl groups, 1α-chloro-2α,3β-dimethylcyclopropane (B) reacts by two parallel first-order processes giving as observed products trans-4-chloropent-2-ene (4CP) and PD + HCl, with log10A(sec?1) = 14.6 and 13.8, respectively, and E = 199.5 and 190.2 kJ/mol, respectively. The 4CP undergoes secondary decomposition to PD + HCl (as investigated previously). Comparison of the results for compounds (A) and (B) with those for other gas-phase and solution reactions leads to the conclusion that the gas-phase thermolyses proceed by rate-determining ring opening to form olefins which may decompose further by thermal or chemically activated reactions, and that the ring opening is a semiionic electrocyclic reaction in which alkyl groups in the 2,3-positions trans to the migrating chlorine semianion move apart, with appropriate consequences for the rate of reaction and the stereochemistry of the products.  相似文献   

16.
Metal Complexes of Biologically Important Ligands. XCV. η5-Pentamethylcyclopentadienyl Rhodium, Iridium, η6- Benzene Ruthenium, and Phosphine Palladium Complexes of Proline Methylester and Proline Amide Proline methylester (L1) and proline amide (L2) give with the chloro bridged complexes [(η5 -C5Me5)MCl2]2 (M ? Rh, Ir), [(η6 -benzene)RuCl2]2 and [Et3PPdCl2]2 N and N,O coordinated compounds: (η5 -C5Me5)M(Cl2)L1 ( 1, 2 M ? Rh, Ir), [(η5-C5Me5) Rh(Cl)(L2)]+Cl? ( 5 ), [(η6- C6Me6) Ru(Cl)(L2)]+Cl? ( 6 ), [(η6-p-cymene)Ru(Cl)(L2)]+Cl? ( 7 ), [(eta;5-C5Me5)M(Cl)(L2-H+)] ( 9, 10 M ? Rh, Ir), (Et3P)Pd(Cl)2L1 ( 3 ), and [(Et3P)Pd(Cl)(L2)]+Cl? ( 8 ). The NMR spectra indicate that for 5 and 6 only one diastereoisomer is formed. The complexes 1, 2, 3 and 5 were characterized by X-ray diffraction.  相似文献   

17.
Photochemistry of Conjugated δ-Keto-enones and β,γ,δ,?-Unsaturated Ketones On 1π,π*-excitation the δ-keto-enones 5–8 are isomerized to compounds B ( 18 , 22 , 26 , 28 ) via 1,3-acyl shift and to compounds C ( 19 , 23 , 27 , 29 ) via 1,2-acyl shift, whereas the β,γ,δ,?-unsaturated ketone 9 gives the isomers 32 and 33 by 1,2-and 1,5-acyl shift, respectively. Furthermore, isomerization of 6 to 24 , dimerization of 8 to 30 and addition of methanol to 8 ( 8 → 31 ) is observed. Unlike 7 and 8 the acyclic ketones 5 , 6 and 9 undergo photodecarbonylation on 1π,π*-excitation ( 5 → 20 , 21 ; 6 → 20 , 25 ; (E)- 9 → 35–38 ). Evidence is given, that the conversion to B as well as the photodecarbonylation of 5,6 and 9 arise from an excited singulet state, but the conversion to C as well as the dimerization of 8 from the T1-state.  相似文献   

18.
Preparation and Structure of Tetrafluoro(η5-pentamethylcyclopentadienyl) Niobium and Tetrafluoro(η5-cyclopentadienyl) Niobium A facile preparation method for (η5-C5Me5)NbF4 3 and (η5-C5H5)NbF4 4 is reported by using AsF3 as a fluorinating agent. Single crystals obtained from AsF3 contain the solvent molecule as well as HF. The composition of the crystal is [(η5-C5Me5)NbF4(AsF3)2]2 · [(η5-C5Me5)NbF4(HF)AsF3]2 5 . The X-ray crystal structure of 5 will be reported. 5 crystallizes triclinic with one furmula in the space group P1 and lattice constants a = 843.1(4), b = 1154.9(6), c = 1910.2(10) pm, α = 91.68(3)°, β = 99.30(3)°, γ = 104.44(2)°.  相似文献   

19.
Phenanthrene derivatives were prepared by reacting an α,α‐dicyanoolefin with different α,β‐unsaturated carbonyl compounds resulting from Wittig reaction of ninhydrin and phosphanylidene or condensation of barbituric acid and an aldehyde. The easy procedure, mild and metal‐catalyst free, reaction conditions, good yields, and no need for chromatographic purifications are important features of this protocol. The structures of the product of type 3 and 5 were corroborated spectroscopically (IR, 1H‐ and 13C‐NMR, and EI‐MS). A plausible mechanism for this type of reaction is proposed (Scheme 1).  相似文献   

20.
Tertiary α-carbomethoxy-α,α-dimethyl-methyl cations a have been generated by electron impact induced fragmentation from the appropriately α-substituted methyl isobutyrates 1–4. The destabilized carbenium ions a can be distinguished from their more stable isomers protonated methyl methacrylate c and protonated methyl crotonate d by MIKE and CA spectra. The loss of I and Br˙ from the molecular ions of 1 and 2, respectively, predominantly gives rise to the destabilized ions a, whereas loss of Cl˙ from [3]+ ˙ results in a mixture of ions a and c. The loss of CH3˙ from [4]+˙ favours skeletal rearrangement leading to ions d. The characteristic reactions of the destabilized ions a are the loss of CO and elimination of methanol. The loss of CO is associated by a very large KER and non-statistical kinetic energy release (T50 = 920 meV). Specific deuterium labelling experiments indicate that the α-carbomethoxy-α,α-dimethyl-methyl cations a rearrange via a 1,4-H shift into the carbonyl protonated methyl methacrylate c and eventually into the alkyl-O protonated methyl methacrylate before the loss of methanol. The hydrogen rearrangements exhibit a deuterium isotope effect indicating substantial energy barriers between the [C5H9O2]+ isomers. Thus the destabilized carbenium ion a exists as a kinetically stable species within a potential energy well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号