首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
The kinetics of the interactions between three sulfur‐containing ligands, thioglycolic acid, 2‐thiouracil, glutathione, and the title complex, have been studied spectrophotometrically in aqueous medium as a function of the concentrations of the ligands, temperature, and pH at constant ionic strength. The reactions follow a two‐step process in which the first step is ligand‐dependent and the second step is ligand‐independent chelation. Rate constants (k1 ~10?3 s?1 and k2 ~10?5 s?1) and activation parameters (for thioglycolic acid: ΔH1 = 22.4 ± 3.0 kJ mol?1, ΔS1 = ?220 ± 11 J K?1 mol?1, ΔH2 = 38.5 ± 1.3 kJ mol?1, ΔS2 = ?204 ± 4 J K?1 mol?1; for 2‐thiouracil: ΔH1 = 42.2 ± 2.0 kJ mol?1, ΔS1 = ?169 ± 6 J K?1 mol?1, ΔH2 = 66.1 ± 0.5 kJ mol?1, ΔS2 = ?124 ± 2 J K?1 mol?1; for glutathione: ΔH1 = 47.2 ± 1.7 kJ mol?1, ΔS1 = ?155 ± 5 J K?1mol?1, ΔH2 = 73.5 ± 1.1 kJ mol?1, ΔS2 = ?105 ± 3 J K?1 mol?1) were calculated. Based on the kinetic and activation parameters, an associative interchange mechanism is proposed for the interaction processes. The products of the reactions have been characterized from IR and ESI mass spectroscopic analysis. A rate law involving the outer sphere association complex formation has been established as   相似文献   

2.
The reaction between chromium(VI) and L-ascorbic acid has been studied by spectrophotometry in the presence of aqueous citrate buffers in the pH range 5.69–7.21. The reaction is slowed down by an increase of the ionic strength. At constant ionic strength, manganese(II) ion does not exert any appreciable inhibition effect on the reaction rate. The rate law found is where Kp is the equilibrium constant for protonation of chromate ion and kr is the rate constant for the redox reaction between the active forms of the oxidant (hydrogenchromate ion) and the reductant (L-hydrogenascorbate ion). The activation parameters associated with rate constant kr are Ea = 20.4 ± 0.9 kJ mol?1, ΔH = 17.9 ± 0.9 kJ mol?1, and ΔS=?152 ± 3 J K?1 mol?1. The reaction thermodynamic magnitudes associated with equilibrium constant Kp are ΔH0 = 16.5 ± 1.1 kJ mol?1 and ΔS0 = 167 ± 4 J K?1 mol?1. A mechanism in accordance with the experimental data is proposed for the reaction. © 1993 John Wiley & Sons, Inc.  相似文献   

3.
The rate constants for the reaction of 2,6‐bis(trifluoromethanesulfonyl)‐4‐nitroanisole with some substituted anilines have been measured by spectrophotometric methods in methanol at various temperatures. The data are consistent with the SNAr mechanism. The effect of substituents on the rate of reaction has been examined. Good linear relationships were obtained from the plots of log k1 against Hammett σpara constants values at all temperature with negative ρ values (?1.68 to ?1.11). Activation parameters ΔH varied from 41.6 to 54.3 kJ mol?1 and ΔS from ?142.7 to ?114.6 J mol?1 K?1. The δΔH and δΔS reaction constants were determined from the dependence of ΔH and ΔS activation parameters on the σ substituent constants, by analogy with the Hammett equation. A plot of ΔH versus ΔS for the reaction gave good straight line with 177°C isokinetic temperature. © 2010 Wiley Periodicals, Inc. Int J Chem Kinet 42: 203–210, 2010  相似文献   

4.
Cyclohexane and piperidine ring reversal in 1-(3-pentyloxyphenylcarbamoyloxy)-2-dialkylaminocyclohexanes was investigated by 13C NMR. An unusually low conformational energy ΔG = 0.59 kJ mol?1 and activation parameters ΔG218 = 43.8 ± 0.4 kJ mol?1, ΔH = 48.9 ± 2.5 kJ mol?1 and ΔS = 23 ± 9 J mol?1 K?1 were found for the diequatorial to diaxial transition of the cyclohexane ring in the trans-pyrrolidinyl derivative. In the trans-piperidinyl derivative, ΔG222 = 44.7 ± 0.5 KJ mol?1, ΔH = 55.7 ± 6.3 kJ mol?1 and ΔS = 51 ± 21 J mol?1 K?1 was found for the piperidine ring reversal from the non-equivalence of the α-carbons.  相似文献   

5.
At room temperature and below, the proton NMR spectrum of N-(trideuteriomethyl)-2-cyanoaziridine consists of two superimposed ABC patterns assignable to two N-invertomers; a single time-averaged ABC pattern is observed at 158.9°C. The static parameters extracted from the spectra in the temperature range from –40.3 to 23.2°C and from the high-temperature spectrum permit the calculation of the thermodynamic quantities ΔH0 = ?475±20 cal mol?1 (?1.987 ± 0.084 kJ mol?1) and ΔS0 = 0.43±0.08 cal mol?1 K?1 (1.80±0.33 J mol?1 K?1) for the cis ? trans equilibrium. Bandshape analysis of the spectra broadened by non-mutual three-spin exchange in the temperature range from 39.4–137.8°C yields the activation parameters ΔHtc = 17.52±0.18 kcal mol?1 (73.30±0.75 kJ mol?1), ΔStc = ?2.08±0.50 cal mol?1 K?1 (?8.70±2.09 J mol?1 K?1) and ΔGtc (300 K) = 18.14±0.03 kcal mol?1 (75.90±0.13 kJ mol?1) for the transcis isomerization. An attempt is made to rationalize the observed entropy data in terms of the principles of statistical thermodynamics.  相似文献   

6.
The oxidation of Na4Fe(CN)6 complex by S2O anion was found to follow an outer‐sphere electron transfer mechanism. We firstly carried out the reaction at pH=1. The specific rate constants of the reaction, kox, are (8.1±0.07)×10?2 and (4.3±0.1)×10?2 mol?1·L·s?1 at μ=1.0 mol·L?1 NaClO4, T=298 K for pH=1 (0.1 mol·L?1 HCl04) and 8, respectively. The activation parameters, obtained by measuring the rate constants of oxidation 283–303 K, were ΔH=(69.0±5.6) kJ·mol?1, ΔS=(?0.34±0.041)×102 J·mol?1·K?1 at pH=l and ΔH=(41.3±5.5) kJ·mol?1, ΔS=(?1.27±0.33)×102 J·mol?1·K?1 at pH=8, respectively. The cyclic voltammetry of Fe(CN) shows that the oxidation is a one‐electron reversible redox process with E1/2 values of 0.55 and 0.46 V vs. normal hydrogen electrode at μ=1.0 mol·L?1 LiClO4, for pH=1 and pH=8 (Tris). respectively. The kinetic results were discussed on the basis of Marcus theory.  相似文献   

7.

Ligand substitution of trans-[CoIII(en)2(Me)H2O]2+ was studied for pyrazole, 1,2,4-triazole and N-acetylimidazole as entering nucleophiles. These displace the coordinated H2O molecule trans to the methyl group to form trans-[Co(en)2(Me)azole]. Stability constants at 18°C for the substitution of H2O by pyrazole, 1,2,4-triazole and N-acetylimidazole are 0.7 ± 0.1, 13.8 ± 1.4 and 1.7 ± 0.2 M?1, respectively. Second order rate constants at the same temperature for the reaction of trans-[CoIII(en)2(Me)H2O]2+ with pyrazole, 1,2,4-triazole and N-acetylimidazole are 161 ± 12, 212 ± 11 and 12.9 ± 1.6 M?1 s?1, respectively. Activation parameters (ΔH, ΔS) are 67 ± 6 kJ mol?1, + 27 ± 19 J K?1 mol?1; 59 ± 2 kJ mol?1, + 1 ± 6 J K?1 mol?1 and 72 ± 4 kJ mol?1, + 23 ± 14 J K?1 mol?1 for reactions with pyrazole, 1,2,4-triazole and N-acetylimidazole, respectively. Substitution of coordinated H2O by azoles follows an Id mechanism.  相似文献   

8.
The complex formation reactions of [Cu(NTP)(OH2)]4? (NTP?=?nitrilo-tris(methyl phosphonic acid)) with some selected bio-relevant ligands containing different functional groups, are investigated. Stoichiometry and stability constants for the complexes formed are reported. The results show that the ternary complexes are formed in a stepwise mechanism whereby NTP binds to copper(II), followed by coordination of amino acid, peptide or DNA. Copper(II) is found to form Cu(NTP)H n species with n?=?0, 1, 2 or 3. The concentration distribution of the various complex species has been evaluated. The kinetics of base hydrolysis of glycine methyl ester in the presence of copper(II)-NTP complex is studied in aqueous solution at different temperatures. It is proposed that the catalysis of GlyOMe ester occurs by attack of OH? ion on the uncoordinated carbonyl carbon atom of the ester group. Activation parameters for the base hydrolysis of the complex [Cu(NTP)NH2CH2CO2Me]4? are, ΔH±?=?9.5?±?0.3?kJ?mol?1 and ΔS±?=??179.3?±?0.9?J?K?1?mol?1. These show that catalysis is due to a substantial lowering of ΔH±.  相似文献   

9.
The kinetics of decomposition of an [Pect·MnVIO42?] intermediate complex have been investigated spectrophotometrically at various temperatures of 15–30°C and a constant ionic strength of 0.1 mol dm?3. The decomposition reaction was found to be first‐order in the intermediate concentration. The results showed that the rate of reaction was base‐catalyzed. The kinetic parameters have been evaluated and found to be ΔS = ? 190.06 ± 9.84 J mol?1 K?1, ΔH = 19.75 ± 0.57 kJ mol?1, and ΔG = 76.39 ± 3.50 kJ mol?1, respectively. A reaction mechanism consistent with the results is discussed. © 2002 Wiley Periodicals, Inc. Int J Chem Kinet 35: 67–72, 2003  相似文献   

10.
The dynamic behavior of the N,N,N′,N′‐tetramethylethylenediamine (tmeda) ligand has been studied in solid lithium‐fluorenide(tmeda) ( 3 ) and lithium‐benzo[b]fluorenide(tmeda) ( 4 ) using CP/MAS solid‐state 13C‐ and 15N‐NMR spectroscopy. It is shown that, in the ground state, the tmeda ligand is oriented parallel to the long molecular axis of the fluorenide and benzo[b]fluorenide systems. At low temperature (<250 K), the 13C‐NMR spectrum exhibits two MeN signals. A dynamic process, assigned to a 180° rotation of the five‐membered metallacycle (π‐flip), leads at elevated temperatures to coalescence of these signals. Line‐shape calculations yield ΔH?=42.7 kJ mol?1, ΔS?=?5.3 J mol?1 K?1, and =44.3 kJ mol?1 for 3 , and ΔH?=36.8 kJ mol?1, ΔS?=?17.7 J mol?1 K?1, and =42.1 kJ mol?1 for 4 , respectively. A second dynamic process, assigned to ring inversion of the tmeda ligand, was detected from the temperature dependence of T1ρ, the 13C spin‐lattice relaxation time in the rotating frame, and led to ΔH?=24.8 kJ mol?1, ΔS?=?49.2 J mol?1 K?1, and =39.5 kJ mol?1 for 3 , and ΔH?=18.2 kJ mol?1, ΔS?=?65.3 J mol?1 K?1, and =37.7 kJ mol?1 for 4 , respectively. For (D12)‐ 3 , the rotation of the CD3 groups has also been studied, and a barrier Ea of 14.1 kJ mol?1 was found.  相似文献   

11.
The spontaneous self‐assembly of a neutral circular trinuclear TiIV‐based helicate is described through the reaction of titanium(IV) isopropoxide with a rationally designed tetraphenolic ligand. The trimeric ring helicate was obtained after diffusion of n‐pentane into a solution with dichloromethane. The circular helicate has been characterized by using single‐crystal X‐ray diffraction study, 13C CP‐MAS NMR and 1H NMR DOSY solution spectroscopic, and positive electrospray ionization mass‐spectrometric analysis. These analytical data were compared with those obtained from a previously reported double‐stranded helicate that crystallizes in toluene. The trimeric ring was unstable in a pure solution with dichloromethane and transformed into the double‐stranded helicate. Thermodynamic analysis by means of the PACHA software revealed that formation of the double‐stranded helicates was characterized by ΔH(toluene)=?30 kJ mol?1 and ΔS(toluene)=+357 J K?1 mol?1, whereas these values were ΔH(CH2Cl2)=?75 kJ mol?1 and ΔS(CH2Cl2)=?37 J K?1 mol?1 for the ring helicate. The transformation of the ring helicate into the double‐stranded helicate was a strongly endothermic process characterized by ΔH(CH2Cl2)=+127 kJ mol?1 and ΔH(n‐pentane)=+644 kJ mol?1 associated with a large positive entropy change ΔS=+1115 J K?1?mol?1. Consequently, the instability of the ring helicate in pure dichloromethane was attributed to the rather high dielectric constant and dipole moment of dichloromethane relative to n‐pentane. Suggestions for increasing the stability of the ring helicate are given.  相似文献   

12.
The kinetics of the interaction of L ‐asparagine with [Pt(ethylenediamine)(H2O)2]2+ have been studied spectrophotometrically as a function of [Pt(ethylenediamine)(H2O)22+], [L ‐asparagine], and temperature at pH 4.0, where the substrate complex exists predominantly as the diaqua species and L ‐asparagine as the zwitterion. The substitution reaction shows two consecutive steps: the first step is the ligand‐assisted anation and the second one is the chelation step. Activation parameters for both the steps have been calculated using Eyring equation. The low ΔH1 (43.59 ± 0.96 kJ mol?1) and large negative values of ΔS1 (?116.98 ± 2.9 J K?1 mol?1) as well as ΔH2 (33.78 ± 0.51 kJ mol?1) and ΔS2 (?221.43 ± 1.57 J K?1 mol?1) indicate an associative mode of activation for both the aqua ligand substitution processes. © 2003 Wiley Periodicals, Inc. Int J Chem Kinet 35: 252–259, 2003  相似文献   

13.
Restricted rotation about the naphthalenylcarbonyl bonds in the title compounds resulted in mixtures of cis and trans rotamers, the equilibrium and the rotational barriers depending on the substituents. For 2,7-dimethyl-1,8-di-(p-toluoyl)-naphthalene (1) ΔH° = 3.66 ± 0.14 kJ mol?1, ΔS° = 1.67 ± 0.63 J mol?1 K?1, ΔHct = 55.5 ± 1.3 kJ mol?1, ΔHct = 51.9 ± 1.3 kJ mol?1, ΔSct = ?41.3±4.1 J mol?1 K?1 and ΔSct = ?42.9±4.1 J mol?1 K?1. The rotation about the phenylcarbonyl bond requires ΔH = ?56.9±4.4 kJ mol?1 and ΔS = ?20.5±15.3 J mol?1 K?1 for the cis rotamer, and ΔH = 43.5Δ0.4 kJ mol?1 and ΔS =± ?22.4Δ1.3 J mol?1 K?1 for the trans rotamer. The role of electronic factors is likely to be virtually the same for both these rotamers but steric interaction between the two phenyl rings occurs in the cis rotamer only. Hence, the difference of the activation enthalpies obtained for the cis and trans rotamers, ΔΔH?1 = 13.4 kJ mol?1, provides a basis for the estimation of the role of steric factors in this rotation. For the tetracarboxylic acid 2 and its tetramethyl ester 3 the equilibrium is even more shifted towards the trans form because of enhanced steric and electrostatic interactions between the substituents in the cis form. The barriers for the rotation around the phenylcarbonyl bond and the cis-trans isomerization are lowered; an explanation for this result is presented.  相似文献   

14.
The kinetics of decomposition of [Alg · Mn VIO42?] intermediate complex have been investigated spectrophotometrically at a constant ionic strength of 0.5 mol dm?3. The decomposition reaction was found to be first-order in the intermediate concentration. The results showed that the rate of reaction was base-catalyzed. The kinetic parameters have been evaluated and found to be ΔS? = ?103.88±6.18 J mol?1 K?1, ΔH? = 51.61 ± 1.02 kJ mol?1, and ΔG? = 82.57 ± 2.86 kJ mol?1, respectively. A reaction mechanism consistent with the results is discussed. © 1993 John Wiley & Sons, Inc.  相似文献   

15.
Geometry, thermodynamic, and electric properties of the π‐EDA complex between hexamethylbenzene (HMB) and tetracyanoethylene (TCNE) are investigated at the MP2/6‐31G* and, partly, DFT‐D/6‐31G* levels. Solvent effects on the properties are evaluated using the PCM model. Fully optimized HMB–TCNE geometry in gas phase is a stacking complex with an interplanar distance 2.87 × 10?10 m and the corresponding BSSE corrected interaction energy is ?51.3 kJ mol?1. As expected, the interplanar distance is much shorter in comparison with HF and DFT results. However the crystal structures of both (HMB)2–TCNE and HMB–TCNE complexes have interplanar distances somewhat larger (3.18 and 3.28 × 10?10 m, respectively) than our MP2 gas phase value. Our estimate of the distance in CCl4 on the basis of PCM solvent effect study is also larger (3.06–3.16 × 10?10 m). The calculated enthalpy, entropy, Gibbs energy, and equilibrium constant of HMB–TCNE complex formation in gas phase are: ΔH0 = ?61.59 kJ mol?1, ΔS = ?143 J mol?1 K?1, ΔG0 = ?18.97 kJ mol?1, and K = 2,100 dm3 mol?1. Experimental data, however, measured in CCl4 are significantly lower: ΔH0 = ?34 kJ mol?1, ΔS = ?70.4 J mol?1 K?1, ΔG0 = ?13.01 kJ mol?1, and K = 190 dm3 mol?1. The differences are caused by solvation effects which stabilize more the isolated components than the complex. The total solvent destabilization of Gibbs energy of the complex relatively to that of components is equal to 5.9 kJ mol?1 which is very close to our PCM value 6.5 kJ mol?1. MP2/6‐31G* dipole moment and polarizabilities are in reasonable agreement with experiment (3.56 D versus 2.8 D for dipole moment). The difference here is due to solvent effect which enlarges interplanar distance and thus decreases dipole moment value. The MP2/6‐31G* study supplemented by DFT‐D parameterization for enthalpy calculation, and by the PCM approach to include solvent effect seems to be proper tools to elucidate the properties of π‐EDA complexes. © 2008 Wiley Periodicals, Inc. Int J Quantum Chem, 2008  相似文献   

16.
Interaction between adsorbed hydrogen and the coordinatively unsaturated Mg2+ and Co2+ cationic centres in Mg‐MOF‐74 and Co‐MOF‐74, respectively, was studied by means of variable‐temperature infrared (VTIR) spectroscopy. Perturbation of the H2 molecule by the cationic adsorbing centre renders the H? H stretching mode IR‐active at 4088 and 4043 cm?1 for Mg‐MOF‐74 and Co‐MOF‐74, respectively. Simultaneous measurement of integrated IR absorbance and hydrogen equilibrium pressure for spectra taken over the temperature range of 79–95 K allowed standard adsorption enthalpy and entropy to be determined. Mg‐MOF‐74 showed ΔH0=?9.4 kJ mol?1 and ΔS0=?120 J mol?1 K?1, whereas for Co‐MOF‐74 the corresponding values of ΔH0=?11.2 kJ mol?1 and ΔS0=?130 J mol?1 K?1 were obtained. The observed positive correlation between standard adsorption enthalpy and entropy is discussed in the broader context of corresponding data for hydrogen adsorption on cation‐exchanged zeolites, with a focus on the resulting implications for hydrogen storage and delivering.  相似文献   

17.
The kinetics of the interaction of adenosine with cis‐[Pt(cis‐dach)(OH2)2]2+ (dach = diaminocyclohexane) was studied spectrophotometrically as a function of [cis‐[Pt(cis‐dach)(OH2)2]2+], [adenosine], and temperature at a particular pH (4.0), where the substrate complex exists predominantly as the diaqua species and the ligand adenosine exists as a neutral molecule. The substitution reaction shows two consecutive steps: the first is the ligand‐assisted anation followed by a chelation step. The activation parameters for both the steps have been evaluated using Eyring equation. The low negative value of ΔH1 (43.1 ± 1.3 kJ mol?1) and the large negative value of ΔS1 (?177 ± 4 J K?1 mol?1) along with ΔH2 (47.9 ± 1.8 kJ mol?1) and ΔS2 (?181 ± 6 J K?1 mol?1) indicate an associative mode of activation for both the aqua ligand substitution processes. The kinetic study was substantiated by infrared and electrospray ionization mass spectroscopic analysis. © 2011 Wiley Peiodicals, Inc. Int J Chem Kinet 43: 219–229, 2011  相似文献   

18.
[RuCl2(NCCH3)2(cod)], an alternative starting material to [RuCl2(cod)] n for the preparation of ruthenium(II) complexes, has been prepared from the polymer compound and isolated in yields up to 87% using a new work-up procedure. The compound has been obtained as a yellow solid without water of crystallization. The complexes [RuCl2(NCR)2(cod)] spontaneously transform into dimers [Ru2Cl(μ-Cl)3(cod)2(NCR)] (R?=?Me, Ph). 1H NMR kinetic experiments for these transformations evidenced first-order behavior. [RuCl2(NCPh)2(cod)] dimerizes slower by a factor of ten than [RuCl2(NCCH3)2(cod)]. The following activation parameters, ΔH #?=?114?±?3?kJ?mol?1 and ΔS #?=?66?±?9?J?K?1?mol?1 for R?=?CH3CN (ΔG #?=?94?±?5?kJ?mol?1, 298.15?K) and ΔH #?=?122?±?2?kJ?mol?1 and ΔS #?=?75?±?6?J?K?1?mol?1 for R?=?Ph (ΔG #?=?100?±?4?kJ?mol?1, 298.15?K), have been calculated from the first-order rate constants in the temperature range 294–323?K. The kinetic parameters are in agreement with a two-step mechanism with dissociation of acetonitrile as the rate-determining step. The molecular structures of [Ru2Cl(μ-Cl)3(cod)2(NCR)] (R?=?Me, Ph) have been determined by X-ray diffraction.  相似文献   

19.
Polyhydroxy polyurethane sorbent was modified by the addition of halogen atoms to its matrix to produce a new sorbent distinguished by high surface polarity, enhanced capacity, and improved stability in both acidic and alkaline media. Halo polyhydroxy polyurethane foam (X-PPF) was characterized by NMR, FTIR, UV–Vis, Raman spectroscopy, pHZCP values, and scanning electron microscopy images. Experimental studies have proven that X-PPFs have a great potential for the extraction and recovery of cobalt ions and this was attributed to the presence of halogen, phenolic, and urethane groups. The pHZCP value of X-PPFs was determined to be 0.91 and the maximum metal recovery was achieved at a pH range of 6–7. The kinetics of the process was best described by pseudo-second-order model (R2?=?1). ΔH, ΔS, and ΔG values were calculated to be ?57.2?kJ?mol?1, ?172.6?J?K?1?mol?1, and ?5.8?kJ?mol?1, respectively. A perfect isotherm curve with zero intercept (0.002), good correlation (R2?=?0.999), and capacity of 246.8?mg?g?1 was obtained.  相似文献   

20.
The initiation reaction of the polymerization of α-methylstyrene by trityl tetrachloroferate and tritylhexachloroantimonate in 1,2-dichloroethane at 20°C was studied. The rate constants were 14 × 10?3 and 27 × 10?3 L mol?1s?1, respectively. The dissociation constants of tritylterachloroferate (Kd = 0.88 × 10?4M?1) and tritylhexachloroantimonate (Kd = 2.64 × 10?4M?1) was determined. The effect of electron acceptors and donors on the dissociation equilibrium and initiation rate was investigated. It was shown that in strongly dissociated ion pairs such as stable carbenium salts the electron donors and acceptors have no appreciable effect on the magnitude of the dissociation. The temperature dependence of the rate constants in the ?20–+20°C range yielded the following thermodynamic parameters for trityltetrachloroferate: Ei = 8.54 kcal/mol; A = 3.2 × 104 mol?1s?1; ΔH* = 8 kcal/mol; and S* = ?39.8 eu.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号