首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
A graph is (m, k)-colorable if its vertices can be colored with m colors in such a way that each vertex is adjacent to at most k vertices of the same color as itself. In a recent paper Cowen, Cowen, and Woodall proved that, for each compact surface S, there exists an integer k = k(S) such that every graph in S can be (4, k)-colored. They also conjectured that the 4 could be replaced by 3. In this note we prove their conjecture.  相似文献   

2.
A graph is (k, d)-colorable if one can color the vertices with k colors such that no vertex is adjacent to more than d vertices of its same color. In this paper we investigate the existence of such colorings in surfaces and the complexity of coloring problems. It is shown that a toroidal graph is (3, 2)- and (5, 1)-colorable, and that a graph of genus γ is (χγ/(d + 1) + 4, d)-colorable, where χγ is the maximum chromatic number of a graph embeddable on the surface of genus γ. It is shown that the (2, k)-coloring, for k ≥ 1, and the (3, 1)-coloring problems are NP-complete even for planar graphs. In general graphs (k, d)-coloring is NP-complete for k ≥ 3, d ≥ 0. The tightness is considered. Also, generalizations to defects of several algorithms for approximate (proper) coloring are presented. © 1997 John Wiley & Sons, Inc.  相似文献   

3.
An L-list coloring of a graph G is a proper vertex coloring in which every vertex v gets a color from a list L(v) of allowed colors. G is called k-choosable if all lists L(v) have exactly k elements and if G is L-list colorable for all possible assignments of such lists. Verifying conjectures of Erdos, Rubin and Taylor it was shown during the last years that every planar graph is 5-choosable and that there are planar graphs which are not 4-choosable. The question whether there are 3-colorable planar graphs which are not 4-choosable remained unsolved. The smallest known example far a non-4-choosable planar graph has 75 vertices and is described by Gutner. In fact, this graph is also 3 colorable and answers the above question. In addition, we give a list assignment for this graph using 5 colors only in all of the lists together such that the graph is not List-colorable. © 1997 John Wiley & Sons, Inc.  相似文献   

4.
In this article we investigate properties of the class of all l-colorable graphs on n vertices, where l = l(n) may depend on n. Let Gln denote a uniformly chosen element of this class, i.e., a random l-colorable graph. For a random graph Gln we study in particular the property of being uniquely l-colorable. We show that not only does there exist a threshold function l = l(n) for this property, but this threshold corresponds to the chromatic number of a random graph. We also prove similar results for the class of all l-colorable graphs on n vertices with m = m(n) edges.  相似文献   

5.
Every planar graph is known to be acyclically 7-choosable and is conjectured to be acyclically 5-choosable (O. V. Borodin et al., 2002). This conjecture if proved would imply both Borodin’s acyclic 5-color theorem (1979) and Thomassen’s 5-choosability theorem (1994). However, as yet it has been verified only for several restricted classes of graphs. Some sufficient conditions are also obtained for a planar graph to be acyclically 4- and 3-colorable. In particular, a planar graph of girth at least 7 is acyclically 3-colorable (O. V. Borodin, A. V. Kostochka and D. R. Woodall, 1999) and acyclically 3-choosable (O. V. Borodin et. al, 2009). A natural measure of sparseness, introduced by Erdős and Steinberg, is the absence of k-cycles, where 4 ≤ kS. Here, we prove that every planar graph without cycles of length from 4 to 12 is acyclically 3-choosable.  相似文献   

6.
DP-coloring (also known as correspondence coloring) is a generalization of list coloring introduced by Dvo?ák and Postle in 2017. In this paper, we prove that every planar graph without 4-cycles adjacent to k-cycles is DP-4-colorable for k=5 and 6. As a consequence, we obtain two new classes of 4-choosable planar graphs. We use identification of vertices in the proof, and actually prove stronger statements that every pre-coloring of some short cycles can be extended to the whole graph.  相似文献   

7.
A graph G is (2, 1)-colorable if its vertices can be partitioned into subsets V 1 and V 2 such that each component in G[V 1] contains at most two vertices while G[V 2] is edgeless. We prove that every graph with maximum average degree mad(G) < 7/3 is (2, 1)-colorable. It follows that every planar graph with girth at least 14 is (2, 1)-colorable. We also construct a planar graph G n with mad (G n ) = (18n − 2)/(7n − 1) that is not (2, 1)-colorable.  相似文献   

8.
Let Δ denote the maximum degree of a graph. Fiam?ík first and then Alon et al. again conjectured that every graph is acyclically edge (Δ+2)-colorable. Even for planar graphs, this conjecture remains open. It is known that every triangle-free planar graph is acyclically edge (Δ+5)-colorable. This paper proves that every planar graph without intersecting triangles is acyclically edge (Δ+4)-colorable.  相似文献   

9.
It is known that planar graphs without cycles of length from 4 to 7 are 3-colorable (Borodin et al., 2005) [13] and that planar graphs in which no triangles have common edges with cycles of length from 4 to 9 are 3-colorable (Borodin et al., 2006) [11]. We give a common extension of these results by proving that every planar graph in which no triangles have common edges with k-cycles, where k∈{4,5,7} (or, which is equivalent, with cycles of length 3, 5 and 7), is 3-colorable.  相似文献   

10.
The toughness indexτ(G) of a graph G is defined to be the largest integer t such that for any S ? V(G) with |S| > t, c(G - S) < |S| - t, where c(G - S) denotes the number of components of G - S. In particular, 1-tough graphs are exactly those graphs for which τ(G) ≥ 0. In this paper, it is shown that if G is a planar graph, then τ(G) ≥ 2 if and only if G is 4-connected. This result suggests that there may be a polynomial-time algorithm for determining whether a planar graph is 1-tough, even though the problem for general graphs is NP-hard. The result can be restated as follows: a planar graph is 4-connected if and only if it remains 1-tough whenever two vertices are removed. Hence it establishes a weakened version of a conjecture, due to M. D. Plummer, that removing 2 vertices from a 4-connected planar graph yields a Hamiltonian graph.  相似文献   

11.
The strong chromatic index of a graph G, denoted sq(G), is the minimum number of parts needed to partition the edges of G into induced matchings. For 0 ≤ klm, the subset graph Sm(k, l) is a bipartite graph whose vertices are the k- and l-subsets of an m element ground set where two vertices are adjacent if and only if one subset is contained in the other. We show that and that this number satisfies the strong chromatic index conjecture by Brualdi and Quinn for bipartite graphs. Further, we demonstrate that the conjecture is also valid for a more general family of bipartite graphs. © 1997 John Wiley & Sons, Inc.  相似文献   

12.
We describe a simple and efficient heuristic algorithm for the graph coloring problem and show that for all k ≥ 1, it finds an optimal coloring for almost all k-colorable graphs. We also show that an algorithm proposed by Brélaz and justified on experimental grounds optimally colors almost all k-colorable graphs. Efficient implementations of both algorithms are given. The first one runs in O(n + m log k) time where n is the number of vertices and m the number of edges. The new implementation of Brélaz's algorithm runs in O(m log n) time. We observe that the popular greedy heuristic works poorly on k-colorable graphs.  相似文献   

13.
The problem of when a recursive graph has a recursive k-coloring has been extensively studied by Bean, Schmerl, Kierstead, Remmel, and others. In this paper, we study the polynomial time analogue of that problem. We develop a number of negative and positive results about colorings of polynomial time graphs. For example, we show that for any recursive graph G and for any k, there is a polynomial time graph G′ whose vertex set is {0,1}* such that there is an effective degree preserving correspondence between the set of k-colorings of G and the set of k-colorings of G′ and hence there are many examples of k-colorable polynomial time graphs with no recursive k-colorings. Moreover, even though every connected 2-colorable recursive graph is recursively 2-colorable, there are connected 2-colorable polynomial time graphs which have no primitive recursive 2-coloring. We also give some sufficient conditions which will guarantee that a polynomial time graph has a polynomial time or exponential time coloring.  相似文献   

14.
Deciding whether a planar graph (even of maximum degree 4) is 3-colorable is NP-complete. Determining subclasses of planar graphs being 3-colorable has a long history, but since Grötzsch’s result that triangle-free planar graphs are such, most of the effort was focused to solving Havel’s and Steinberg’s conjectures. In this paper, we prove that every planar graph obtained as a subgraph of the medial graph of any bipartite plane graph is 3-choosable. These graphs are allowed to have close triangles (even incident), and have no short cycles forbidden, hence representing an entirely different class than the graphs inferred by the above mentioned conjectures.  相似文献   

15.
A (k, 1)‐coloring of a graph is a vertex‐coloring with k colors such that each vertex is permitted at most 1 neighbor of the same color. We show that every planar graph has at least cρn distinct (4, 1)‐colorings, where c is constant and ρ≈1.466 satisfies ρ3 = ρ2 + 1. On the other hand for any ε>0, we give examples of planar graphs with fewer than c(? + ε)n distinct (4, 1)‐colorings, where c is constant and . Let γ(S) denote the chromatic number of a surface S. For every surface S except the sphere, we show that there exists a constant c′ = c′(S)>0 such that every graph embeddable in S has at least c′2n distinct (γ(S), 1)‐colorings. © 2010 Wiley Periodicals, Inc. J Graph Theory 28:129‐136, 2011  相似文献   

16.
Lovász, Saks, and Trotter showed that there exists an on-line algorithm which will color any on-linek-colorable graph onn vertices withO(nlog(2k–3) n/log(2k–4) n) colors. Vishwanathan showed that at least (log k–1 n/k k ) colors are needed. While these remain the best known bounds, they give a distressingly weak approximation of the number of colors required. In this article we study the case of perfect graphs. We prove that there exists an on-line algorithm which will color any on-linek-colorable perfect graph onn vertices withn 10k/loglogn colors and that Vishwanathan's techniques can be slightly modified to show that his lower bound also holds for perfect graphs. This suggests that Vishwanathan's lower bound is far from tight in the general case.Research partially supported by Office of Naval Research grant N00014-90-J-1206.  相似文献   

17.
In this paper it is proved that every 3-connected planar graph contains a path on 3 vertices each of which is of degree at most 15 and a path on 4 vertices each of which has degree at most 23. Analogous results are stated for 3-connected planar graphs of minimum degree 4 and 5. Moreover, for every pair of integers n 3, k 4 there is a 2-connected planar graph such that every path on n vertices in it has a vertex of degree k.  相似文献   

18.
Diperfect graphs     
Gallai and Milgram have shown that the vertices of a directed graph, with stability number α(G), can be covered by exactly α(G) disjoint paths. However, the various proofs of this result do not imply the existence of a maximum stable setS and of a partition of the vertex-set into paths μ1, μ2, ..., μk such tht |μiS|=1 for alli. Later, Gallai proved that in a directed graph, the maximum number of vertices in a path is at least equal to the chromatic number; here again, we do not know if there exists an optimal coloring (S 1,S 2, ...,S k) and a path μ such that |μ ∩S i|=1 for alli. In this paper we show that many directed graphs, like the perfect graphs, have stronger properties: for every maximal stable setS there exists a partition of the vertex set into paths which meet the stable set in only one point. Also: for every optimal coloring there exists a path which meets each color class in only one point. This suggests several conjecties similar to the perfect graph conjecture. Dedicated to Tibor Gallai on his seventieth birthday  相似文献   

19.
We present an improved upper bound on the harmonious chromatic number of an arbitrary graph. We also consider ?fragmentable”? classes of graphs (an example is the class of planar graphs) that are, roughly speaking, graphs that can be decomposed into bounded-sized components by removing a small proportion of the vertices. We show that for such graphs of bounded degree the harmonious chromatic number is close to the lower bound (2m)1/2, where m is the number of edges.  相似文献   

20.
A graph G is (k,0)‐colorable if its vertices can be partitioned into subsets V1 and V2 such that in G[V1] every vertex has degree at most k, while G[V2] is edgeless. For every integer k?0, we prove that every graph with the maximum average degree smaller than (3k+4)/(k+2) is (k,0)‐colorable. In particular, it follows that every planar graph with girth at least 7 is (8, 0)‐colorable. On the other hand, we construct planar graphs with girth 6 that are not (k,0)‐colorable for arbitrarily large k. © 2009 Wiley Periodicals, Inc. J Graph Theory 65:83–93, 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号