首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 58 毫秒
1.
A mathematical model was developed to describe diffusion of a penetrant and a solute in a swellable polymer slab. The model was applied to the case of a hydrophilic polymer loaded with a soluble bioactive agent, in which the penetrant (water) is sorbed and solute is desorbed. The model allows the incorporation of any appropriate form of the diffusion coefficients. A Fujita-type exponential dependence on penetrant concentration was chosen and shown to be adequate for prediction of a range of transport behavior. Dimensional changes in the sample were predicted by allowing each spatial increment to expand according to the amount of penetrant sorbed. During the initial period of release, the swelling was restricted to one dimension by the glassy core of the sample. At a later point in the process, the center of the sample had sorbed enough penetrant to plasticize it, and the sample relaxed to an isotropically swollen state; thereafter swelling was three-dimensional.  相似文献   

2.
When a glassy polymer containing a uniformly dispersed solute is brought in contact with a penetrant, solute diffusion will be associated with the transport mechanism and penetration velocity of the penetrant in the polymer. Analysis and prediction of mechanisms of diffusional solute release may be obtained through a new dimensionless number, the swelling interface number, Sw, which compares the relative mobilities of the penetrant and the solute in the presence of macromolecular relaxations in the polymer. It is shown that a sufficient and necessary criterion for time-independent diffusional solute release rates from these swellable systems is that the Sw be smaller than 10?2. The swelling interface number Sw may be related to easily determined structural and thermodynamic parameters of the solute/polymer/penetrant system. Preliminary experimental results of dynamic water swelling of poly(2-hydroxyethyl methacrylate-co-methyl methacrylate) and diffusional release of theophylline from initially glassy copolymers show that decreasing values of Sw are related to increased pseudo-case-II transport kinetics of the solute.  相似文献   

3.
Adsorption and controlled release of Chlortetracycline HCl to and from multifunctional polymeric materials (HEMA/MAA) hydrogels were investigated. P(HEMA/MAA) hydrogels were synthesized by gamma radiation-induced copolymerization of 2-hydroxyethylmethacrylate (HEMA) and methacrylic acid (MAA) in aqueous solution. The influence of copolymer composition and pH value of the surrounding medium on the type of water diffusion into the glassy polymer were discussed. Drug, Chlortetracycline HCl containing hydrogels, with different drug concentration to polymer ratios, was loaded by direct adsorption method. The influence of MAA content in the gel on the adsorption capacities of hydrogel was studied. Chlortetracycline HCl adsorption capacity of hydrogels was found to increase from 8 to 138 mg Chlortetracycline HCl per gram dry gel with increasing amount of MAA in the gel system and drug concentration. The effect of pH on the releasing behavior of Chlortetracycline HCl from gel matrix was investigated. In vitro drug release studies in different buffer solutions show that the basic parameters affecting the drug release behavior of hydrogel are the pH of the solution and MAA content of hydrogel.  相似文献   

4.
Zero order release of a drug from monolithic polymer devices fails because the drug concentration gradient within the matrix falls with time. In principle, it should be possible to maintain this concentration gradient constant via the introduction of a ratelimiting barrier to solute diffusion at the surface of the device. In this study, progesterone-dispersed monolithic devices were prepared from either polyhydroxyethyl methacrylate (HEMA) or a copolymer of HEMA and methoxyethoxyethyl methacrylate (MEEMA). These monolithic devices were soaked in an ethanol solution of ethylene glycol dimethacrylate (EGDMA) followed by exposure to UV light to create a crosslinked zone at the outer edge. The cross-linked zone has a much lower permeability to solute than the central region of the device and therefore serves as a rate-limiting barrier. Progesterone release studies demonstrated a zero order release from devices with the crosslinked outer layer. Drug release rates were dependent upon the UV treatment time, the EGDMA concentration, and the device soaking time in the EGDMA solution.  相似文献   

5.
Diffusion of drug molecules in polymer materials is of great importance in controlled drug release, and the investigation of the mechanism of drug release from the polymer matrix would help us to understand the release behavior of the controlled release system. In this work, molecular dynamics simulations were employed to investigate the diffusion mechanisms of penetrant molecules with different sizes in poly(lactic acid-co-ethylene glycol) (PLA-PEG). The size effect on the diffusion mechanism of penetrant molecules in polymer matrixes was discussed in detail. A competition mechanism in a two-step diffusion process-(1) motion within the cavities (free volumes), and (2) jumps between cavities or movement of the cavity itself originated from the wriggling of the polymer chains-was observed, and the contributions of these two factors to the diffusion coefficient were successfully separated. With the medium volume of penetrant molecules (e.g., benzene), a competition between these two steps was observed. Step (2) controlled the diffusion when penetrant molecules became bigger.  相似文献   

6.
Apparent thermodynamic diffusion coefficients were obtained from carbon tetrachloride, benzene, and n-hexane sorption-desorption kinetics in crystalline and amorphous ethylene-propylene copolymers (with propylene content from 1 to 70 wt. %, and crystallinity from 0% to 77%), in high-density and low-density polyethylene, and in polypropylene. The dependence of the diffusion coefficient vs. concentration curves on crystallinity and propylene content in the copolymers is reported. The diffusion coefficient at zero penetrant concentration increases with decrease in crystallinity. The apparent diffusion activation energies in the temperature interval investigated (25 to 75°C) are independent of temperature and are constant for crystalline copolymers. A modified Fujita-like free-volume theory for diffusion in crystalline polymer systems is introduced, and the theoretical estimates of diffusion coefficients show satisfactory agreement with experiment.  相似文献   

7.
A previously developed model of simple penetrant diffusion is extended to encompass complex penetrants of idealized molecular shape, characterized by dimensions of length, width, and thickness. Expressions are obtained for D(0,T), the diffusion coefficient at zero penetrant concentration (c), and the fractional increase in D(0,T) as a function of c and temperature (T). The model predicts that D(0,T) will exhibit Arrhenius behavior at temperatures well above Tg and gives the limiting activation energy as a function of penetrant thickness and the polymer energy/distance constants used previously. For Tg < T ? Tg + 150 K the model requires two new disposable parameters, in addition to the jump-length parameter of the simple penetrant theory. These parameters, however, have precise physical meanings (all are lengths) and together with the penetrant dimensions and polymer constants determine the absolute magnitude of the diffusion coefficient as well as its relative dependence on c and T. For T ? Tg + 40 the relative concentration dependence may be calculated in terms of the penetrant dimensions and polymer constants only.  相似文献   

8.
A series of thermoresponsive sodium alginate-g-poly(vinyl caprolactam) (NaAlg-g-PNVCL) beads were prepared as drug delivery matrices of 5-flurouracil (5-FU) crosslinked by glutaraldehyde (GA) in the hydrochloric acid catalyst. Graft copolymers of sodium alginate with vinyl caprolactam were synthesized using azobisisobutyronitrile as an initiator, and characterized by Fourier infrared spectroscopy, differential scanning calrimetry and X-ray diffraction for analysis of the amorphous nature drug in the beads, and by scanning electron microscopy for the spherical nature of the beads. Preparation condition of the beads was optimized by considering the percentage of encapsulation efficiency, swelling behavior of beads and their release data. Effects of variables such as GA concentration, drug/polymer ratio and catalyst concentration on the release of 5-FU were carried out at two different temperatures (25 and 37 °C) in simulated intestinal fluid for 12 h. It was observed that, drug release from the beads decreased with increasing drug/polymer (d/p) ratio, extent of crosslinking agent and catalyst concentration. The swelling degree of graft copolymer beads was found to be increased with decreasing of environmental temperature. In vitro release studies were performed at 25 and 37 °C for 12 h, and showed that thermoresponsive graft copolymer beads had higher drug release behavior at 25 °C than that at 37 °C, following Fickian diffusion transport mechanism with slight deviation.  相似文献   

9.
Drug release mechanisms from, and diffusion processes in, hydrophilic crosslinked polymeric systems were investigated in two macromolecular states: in the glassy and rubbery states during the early part of countercurrent water diffusion, and in the rubbery state after thermodynamic equilibrium between the network and the surrounding dissolution medium (water) was attained. Dilute, aqueous poly(vinyl alcohol) (PVA) solutions containing theophylline were crosslinked with glutaraldehyde. The crosslinking ratio, X, varied between 0.01 and 0.20 moles glutaraldehyde per mole of PVA repeating unit. Theophylline release from these rubbery matrices was followed as a function of time. It was determined that, within the range of crosslinking ratios studied, the crosslinked macromolecular structure affected the solute diffusion process. Theophylline release from crosslinked PVA slabs, which were originally dehydrated at 30°C, was also measured. The drug release process was significantly impeded in these systems, especially for samples with crosslinking ratio X ≥ 0.10. This behavior was explained in terms of relaxation of the macromolecular chains and possible existence of ordered chain structures. Glass-to-rubber transitions, a result of the countercurrent diffusion of water into the originally dried (glassy) polymer, shifted the fractional release of theophylline from a f(t1/2) to a f(tn) time dependence, with n taking values between 0.50 and 0.76. This type of release behavior indicates anomalous diffusion mechanisms. These results may be helpful in the development of swelling controlled drug delivery systems.  相似文献   

10.
Controlled delivery systems would be more beneficial and ideal if the drug could be delivered with respond to external environmental change. It could be used to overcome the shortcomings of conventional dosage forms. Therefore, the correct amount of drug would be released upon the stimulation of such a temperature and concentration change. The purpose of study is to investigate the influence of temperature and drug concentration from poly(2-hydroxyethyl methacrylate and N-isopropylacrylamide)/poly(HEMA-NIPAAm). The macroporous structure 5HEMA15NIPAAm was showed the most rapid responsiveness in swelling ratio, polymer volume fraction, swelling and deswelling kinetics. The high drug loading capacity was achieved at or below ambient temperature, whilst the release profile was revealed sustain release of conventional anti-inflammatory drug; prednisolone 21 hemisuccinate sodium salt. In general, drug loading capacity and drug diffusion kinetics are influence by the porosity of hydrogels, temperature, and drug concentration.  相似文献   

11.
The aim of this study was to synthesize and characterize a novel biocompatible polymeric membrane system and demonstrate its potential use in various biomedical applications. Synthetic hydrogels based on poly(hydroxyethyl methacrylate), poly(HEMA), have been widely studied and used in biomedical fields. A novel copolymer hydrogel was prepared in the membrane form using 2-hydroxyethyl methacrylate monomer (HEMA) and a macromonomer p-vinylbenzyl-poly(ethylene oxide) (V-PEO) via photoinitiated polymerization. A series of poly(HEMA/V-PEO) copolymer membranes with different compositions was prepared. The membranes were characterized using infrared, thermal and SEM analysis. The thermal stabilities of the copolymer membranes were found to be lowered by an increase in the ratio of macromonomer (V-PEO) in the membrane structure. Because of the incorporation of PEO segments, the copolymers exhibited significantly higher hydrophilic surface properties than pure poly(HEMA), as demonstrated by contact angle measurements. Equilibrium swelling studies were conducted to investigate the swelling behavior of the membranes. The equilibrium water uptake was reached in about 4 h. Moreover, the blood protein adsorption and platelet adhesion were significantly reduced on the surface of the PEO containing copolymer membranes compared to control pure poly(HEMA). Drug release experiments were performed in a continuous release system using model drug (vancomycin) loaded copoly(HEMA/V-PEO) membranes. A specific poly(HEMA/V-PEO) membrane formulation possessing the highest PEO content (with a HEMA:V-PEO (mmol:mmol) feed ratio of 112:1 and loaded with 40 mg antibiotic/g polymer) released about 81% of the total loaded drug in 24 h at pH 7.4. This membrane composition provided the best results and can be considered as a potential candidate for a transdermal antibiotic carrier and various biomedical and biotechnological applications.  相似文献   

12.
We obtain the exact solution of a fairly large class of somewhat simplified problems involving the simultaneous nonlinear Fickian diffusion of a poor solvent and a dilute organic penetrant, such as a plasticizer, in a semi-infinite polymer slab immersed in the solvent bath. Such problems can also provide useful estimates during certain time regimes of release of drugs from implants, and pesticides and pheromones from certain slow or controlled-release polymeric devices, insofar as these are affected by an environmental solvent bath. We assess the effect of various simplifications made (e.g., neglect of the penetrant concentration dependence in the diffusion coefficient, cross diffusion of solvent and penetrant, and a variety of boundary conditions) by solving exactly some additional specialized cases.  相似文献   

13.
The new copolymeric hydrogels based on 2-hydroxyethyl methacrylate (HEMA) and itaconic acid (IA) were prepared by gamma irradiation, in order to examine the potential use of these hydrogels in controlled drug release systems. The influence of IA content in the gel on the swelling characteristics and the releasing behavior of hydrogels, and the effect of different drugs, theophylline (TPH) and fenethylline hydrochloride (FE), on the releasing behavior of P(HEMA/IA) matrix were investigated in vitro. The diffusion exponents for swelling and drug release indicate that the mechanisms of buffer uptake and drug release are governed by Fickian diffusion. The swelling kinetics and, therefore, the release rate depends on the matrix swelling degree. The drug release was faster for copolymeric hydrogels with a higher content of itaconic acid. Furthermore, the drug release for TPH as model drug was faster due to a smaller molecular size and a weaker interaction of the TPH molecules with(in) the P(HEMA/IA) copolymeric networks.  相似文献   

14.
15.
The diffusion of water into cylinders of polyHEMA and copolymers of HEMA with THFMA, BMA and CHMA were studied over a range of copolymer compositions. The diffusion of water into the polymers was found to follow a Fickian, or case I mechanism. The diffusion coefficients of water were determined from mass measurements and NMR imaging studies. They were found to vary from 1.7 ± 0.2 x 10−11 m2 s−1 for polyHEMA at 37°C to lower values for the copolymers. The mass of water absorbed at equilibrium relative to the mass of dry polymer varied from 52-58 wt% for polyHEMA to lower values for the copolymers.  相似文献   

16.
The dissolution mechanism of rubbery polymers was analyzed by dividing the penetrant concentration field into three regimes that delineate three distinctly different transport processes. The solvent penetration into the rubbery polymer was assumed to be Fickian. The mode of mobility of the polymer chains was shown to undergo a change at a critical penetrant concentration expressed as a change in the diffusion coefficient of the polymer. It was assumed that beyond the critical penetrant concentration, reptation was the dominant mode of diffusion. Molecular arguments were invoked to derive expressions for the radius of gyration, the plateau modulus, and the reptation time, thus leading to an expression for the reptation diffusivity. The disentanglement rate was defined as the ratio between the radius of gyration of the polymer and the reptation time. Transport in the second penetrant concentration regime was modeled to occur in a diffusion boundary layer adjacent to the polymer-solvent interface, where a Smoluchowski type diffusion equation was obtained. The model equations were numerically solved using a fully implicit finite difference technique. The results of the simulation were analyzed to ascertain the effect of the polymer molecular weight and its diffusivity on the dissolution process. The results show that the dissolution can be either disentanglement or diffusion controlled depending on the polymer molecular weight and the thickness of the diffusion boundary layer. © 1996 John Wiley & Sons, Inc.  相似文献   

17.
The hydrophobic interaction of amphiphilic copolymers, which contain 2-hydroxyethyl methacrylate(HEMA) and 1vinyl-2-pyrrolidone (VPy), with Methyl Orange (MO) was compared with that of HEMA-acrylamide (AAm) copolymers to deduce the correlation between their complexation ability in a photochromic azo dye and the photoviscosity effect in aqueous copolymer/dye complex solution. On the basis of the dialysis data and fluorometric analysis it appeared that the complexation dependence on HEMA content in the copolymers was due to the hydrophobic interaction between the polymer and the dye. For a comparable HEMA content AAm copolymers bound less MO than VPy copolymers. It was confiied by photoviscosity measurements that the conformation of the complex composed of photochromic azo dye and HEMA copolymer changed reversibly in response to the photo- and thermal isomerization of the dye. In HEMA-AAm copolymer systems the photoviscosity effect was small compared with that of HEMA-VPy copolymer systems. From these results it was concluded that the complexation ability of polymers due to the hydrophobic interaction was an important factor in producing a large photoinduced conformational change in water.  相似文献   

18.
Yun Tian 《中国化学快报》2008,19(9):1111-1114
In this work, the adsorption and diffusion behavior of nitrate ions into polycationic P(DMAEMA/HEMA) hydrogels is analyzed. Experimental results indicated that nitrate ions can be removed efficiently from aqueous solutions. Adsorption isotherm of gels was well according to the Langmuir and Langmuir-Freundlich models. At the same time, the diffusion behavior of nitrate ions from P(DMAEMA/HEMA) hydrogels was investigated. The diffusion coefficients are strongly influenced by the changes of temperature and pH value of solutions. At the same time, D does not depend on the gels cross-linking ratio and initial solute concentration.  相似文献   

19.
The present study deals with the modification of sterculia gum to develop the novel colon specific delivery system for use in colon cancer. The sterculia and acrylic acid based hydrogels were synthesized and characterized with FTIR, SEMs, TGA and swelling behavior. Swelling studies of the hydrogels were carried out as a function of reaction parameters such as monomer concentration, initiator concentration, amount of sterculia gum and crosslinker concentration and nature of swelling mediums. Swelling kinetics of the hydrogels and in vitro release dynamics of anticancer model drug methotrexate from the hydrogels were studied to evaluate the swelling mechanism and drug release mechanism from the drug-loaded hydrogels. The values of diffusion exponent for the release of drug were 0.883, 0.910 and 0.787 in distilled water, pH 2.2 buffer and pH 7.4 buffer, respectively. The release of drug from the polymer matrix occurred through a non -Fickian type diffusion mechanism.  相似文献   

20.
Novel surface-modified hydrogel materials have been prepared by binding charged porphyrins TMPyP (tetrakis(4-N-methylpyridyl)porphyrin) and TPPS (tetrakis(4-sulfonatophenyl)porphyrin) to copolymers of HEMA (2-hydroxyethyl methacrylate) with either MAA (methacrylic acid) or DEAEMA (2-(diethylamino)ethyl methacrylate). The charged hydrogels display strong electrostatic interactions with the appropriate cationic or anionic porphyrins to give materials which are intended to be used to generate cytotoxic singlet oxygen (1O2) on photoexcitation and can therefore be used to reduce postoperative infection of the intraocular hydrogel-based replacement lenses that are used in cataract surgery. The UV/vis spectra of TMPyP in MAA:HEMA copolymers showed a small shift in the Soret band and a change from single exponential (161 micros) triplet decay lifetime in solution to a decay that could be fitted to a biexponential fit with two approximately equal components with tau = 350 and 1300 micros. O2 bubbling reduced the decay to a dominant (90%) component with a much reduced lifetime of 3 micros and a minor, longer lived (20 micros) component. With D2O solvent the 1O2 lifetime was measured by 1270 nm fluorescence as 35 micros in MAA:HEMA, compared to 67 mus in solution, although absorbance-matched samples showed similar yield of 1O2 in the polymers and in aqueous solution. In contrast to the minor perturbation in photophysical properties caused by binding TMPyP to MAA:HEMA, TPPS binding to DEAEMA:HEMA copolymers profoundly changed the 1O2 generating ability of the TPPS. In N2-bubbled samples, the polymer-bound TPPS behaved in a similar manner to TMPyP in its copolymer host; however, O2 bubbling had only a very small effect on the triplet lifetime and no 1O2 generation could be detected. The difference in behavior may be linked to differences in binding in the two systems. With TMPyP in MAA:HEMA, confocal fluorescence microscopy showed significant penetration of the porphyrin into the core of the polymer film samples (>150 microm). However, for TPPS in DEAEMA:HEMA copolymers, although the porphyrin bound much more readily to the polymer, it remained localized in the first 20 microm, even in heavily loaded samples. It is possible that the resulting high concentration of TPPS may have cross-linked the hydrogels to such an extent that it significantly reduced the solubility and/or diffusion rate of oxygen into the doped polymers. This effect is significant since it demonstrates that even simple electrostatic binding of charged porphyrins to hydrogels can have an unexpectedly large effect on the properties of the system as a whole. In this case it makes the apparently promising TPPS/DEAEMA:HEMA system a poor candidate for clinical application as a postoperative antibacterial treatment for intraocular lenses while the apparently equivalent cationic system TMPyP/MAA:HEMA displays all the required properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号