首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A method called “image-sedimentation”, based on the application of Stokes' law to suspension and image techniques, is proposed for the rapid analysis of particle size distributions. A parallel beam of optical light, after passing through a cell containing particles, is measured with a linear image sensor with 2048 photodetectors to determine the attenuated light intensity displayed on a monitor screen. The settling height between any given point and the liquid surface can be measured accurately by use of this image technique without any additional mechanical device to move either the light beam or the glass cell containing the suspension. Consequently, the total time required for the determination of the particle size distribution, typically of a carborundum powder having a median diameter of 5 μm, takes only 5 min as compared with more than 20 min by using other instruments based on the sedimentation principle.  相似文献   

2.
A scattered light photometer which monitors the particle number concentration of aerosols is described. The photometer measures the scattered light from illuminated submicron particle clouds with known material properties at certain scattering angles. Intensity ratios in combination with the degree of polarization are used to determine the mean particle diameter and the geometric standard deviation of an assumed log-normal particle size distribution. The determination of the particle size distribution is based on an algorithm which compares the measured and calculated (Mie theory) relative intensity quantities described. Furthermore, the particle number concentration is monitored from a single absolute intensity measurement at one scattering angle. In order to obtain quantitative results a spherical particle shape is required.  相似文献   

3.
A new method for the simultaneous determination of the distribution of particle mass density and the distribution of particle size with a technique with only a single measurement is presented. The basic idea of the new optical method is the analysis of gravitational particle settling by a digital image acquisition system. Individual particles illuminated by a laser light sheet are tracked by a continuously operating CCD camera. The projected area, shape factors and the centre of gravity are detected during the sedimentation process from a series of images with a constant time spread. As the algorithm is based on single particle tracking, the heterogeneity of the sample can be taken into account. From these measured particle characteristics, particle size and settling rate are calculated. Thus particle mass density is obtained taking into account also the influence of particle shape on the settling process. This method, which we name sedimentation image analysis (SIA), is particularly suitable for the characterization of heterogeneous material, e.g. soil, in the micrometer range.  相似文献   

4.
粉末冶金高温合金中元素偏析以及粉末原始颗粒边界是影响材料性能的重要因素,由于其颗粒粒径通常为几十微米,宏观的成分分布分析方法无法实现粉末原始颗粒边界处成分分布的精细表征。微束X射线荧光光谱(μ-XRF)是近年来发展起来的无损微区成分分布分析技术,可实现材料较大范围内元素快速、高分辨分布分析,目前在地质、考古、生物等领域有了较多的应用,但在复杂块状金属成分定量分布表征方面还存在一定困难,在粉末冶金工业领域还未见有应用报道。该试验研究了高温合金中各元素的荧光光谱行为,通过类型匹配的高温合金块状标准样品对元素定量模型进行了校正,建立了基于μ-XRF的高温合金成分定量分布分析方法,满足了粉末冶金工业对于较大范围内粉末边界成分分布精细定量表征的需求。该实验以经高纯钴合金化处理的放电等离子体烧结(SPS)粉末高温合金样品为研究对象,对经不同球磨时间混合处理后的粉末烧结样品中的Ni,Co,Cr,Mo,W,Ta,Ti和Al进行了定量统计分布分析,探讨了不同球磨时间对烧结样品成分分布的影响规律;发现样品中存在大量原始颗粒边界,且成分分布较不均匀,颗粒中心处仍然为原始高温合金颗粒成分,经球磨混合加入的纯Co粉颗粒仅存在于高温合金颗粒的外层,导致颗粒边缘Co含量明显高于颗粒中心。当球磨时间较短时,原始颗粒边界处存在很多Co富集区,当球磨时间增加到24 h时,由于在机械混粉过程中超细钴粉与高温合金的合金化,使烧结样品成分分布均匀性有了较大改善,原始颗粒边界处Co的含量显著下降,而其他元素的含量有所增加,说明球磨时间的延长,样品中各元素发生了明显的扩散,这将有助于元素偏析的改善,据此,该粉末冶金高温合金的制备工艺将得以改进。该法亦可应用于其他各种粉末冶金工业产品的成分定量分布表征,可为粉末冶金工艺优化、产品质量的改进提供数据支撑。  相似文献   

5.
粒度测量广泛应用于粉体工程,测量结果直接影响粉体产品优劣。在深入研究MIE散射理论的基础上,提出一种基于改进反演算法的粒度测量系统设计方案,利用激光器、傅里叶透镜、光电传感器采集含有待测微粒信息的电信号,通过调理电路进行处理,应用改进反演算法分析得出粒度值及分布。通过实验验证,效的本文提出的设计方案能实现准确高粒度测量。  相似文献   

6.
杨航  张帅  张云飞  黄文  何建国 《强激光与粒子束》2022,34(8):082002-1-082002-7
针对抛光粉沉降特性数值计算这一超大规模非线性问题,基于Kahan线性化解决了超大规模流固耦合计算问题。研究了以羟基铁粉和硅油为主要成分组合而成的抛光粉多相流在梯度磁场下抛光区域的沉降特性。以质量分数70%、粒径5 μm的羟基铁粉和粘度为0.973 Pa·s的硅油组合而成的抛光粉为研究对象,实现了不同的抛光轮转速、不同嵌入深度以及不同羰基铁粉质量分数情况下的沉降规律分析。结果发现:磁流变抛光区域的抛光粉会随着抛光轮转速的增大而增多;当到达出口时,抛光粉的分布趋于稳定状态;抛光粉会随着嵌入深度的增加而增多并存在饱和区;羟基铁粉的质量分数以非线性的方式影响沉降能力。  相似文献   

7.
A method of deconvoluting 2‐dimensional particle size distributions from chord size data is presented and evaluated. This is the Probability Apportioning Method (PAM3). It assumes that the particles (or droplets) can be represented by super quadrics and are cut randomly by a sensor to give a chord measurement. Starting from an assumed uniform particle distribution, Bayes' theorem is used to calculate hit probabilities for each particle type and the population is then recalculated. The process is then repeated until there is no significant further change in the calculated distribution. Using numerical simulations PAM3 is shown to be quite accurate and robust for a number of different types of particle shapes provided there is a sufficient number of accurate measurements.  相似文献   

8.
Pd颗粒表面修饰ZnO纳米线阵列的制备及其气敏特性   总被引:1,自引:0,他引:1       下载免费PDF全文
采用化学气相沉积(CVD)方法在SiO_2/Si衬底生长了ZnO纳米线阵列,纳米线长约为15μm,直径为100~500 nm。通过改变溅射沉积时间(0~150 s),在ZnO纳米线表面包覆了不同厚度的Pd薄膜。在Ar气氛中,经800℃高温退火后,制备出Pd颗粒表面修饰的ZnO纳米线阵列并对其进行了气敏测试。对于乙醇而言,所有传感器最佳工作温度均为280℃。溅射时间的增加(3~10 s)导致ZnO纳米线表面Pd纳米颗粒数量及尺寸增加,传感器响应值由2.0增至3.6。过长的溅射时间(30~150 s)将导致Pd颗粒尺寸急剧增大甚至形成连续膜,传感器响应度显著降低。所有传感器对H2均表现出相对较好的选择性,传感器具有较好的响应-恢复特性和稳定性。最后,探讨了Pd颗粒表面修饰对ZnO纳米线阵列气敏传感器气敏特性的影响机制。  相似文献   

9.
The particle size distribution of component materials can be important parameter governing the proper function of many industrial products. At present, accurate determination of particle size by currently available methods is difficult for both theoretical and practical reasons. In this paper, some elementary notions regarding particle sizing are reviewed as is the relative performance of commercially available particle sizing instrumentation which could be used for particle size analysis of dry powders. Our results indicate that various particle size instruments yield significantly (even vastly) different particle size distributions for the same material. Without great care on the part of the investigator, the results obtained from any given instrument may not accurately describe the powder in question and thus may cause incorrect technical recommendations. The use of Fraunhofer diffraction instruments on samples containing irregularly shaped small ( < 10 μm) particles of low refractive index requires considerable caution.  相似文献   

10.
Analytical centrifugation (AC) has recently shown great potential for the accurate determination of particle size distributions. The well-established LUMiSizer(R) is customized by a new design allowing for higher rotor speeds, improved thermal insulation, and measurement cell assembly. The latter enables sedimentation analysis of nanoparticles (NPs) in sector-shaped centerpieces. The measurement window of AC experiments is assessed by the Peclet (Pe) number. It is shown that at low Pe numbers (0.7 < Pe < 30), sedimentation, and diffusion can be accurately and simultaneously analyzed from the sedimentation boundaries within one experiment. Moreover, sedimentation properties can be reliably determined up to Pe numbers of 4000. The thermal characteristic throughout the sedimentation analysis is validated by measuring polystyrene particles at elevated temperatures. Moreover, the performance of the setup is demonstrated by determining the sedimentation properties of SiO2 NPs at intermediate Pe numbers in excellent agreement with results from analytical ultracentrifugation experiments. Finally, for the first time, an accurate analysis of the core–shell properties of Au NPs via AC is presented. By combining the analysis of sedimentation and diffusional properties at low Pe numbers, the shell thickness of the stabilizer cetyltrimethylammonium bromide alongside the core diameter distribution of the Au NPs is determined.  相似文献   

11.
The dependence of the mean size of dispersed phase particles on the physical parameters of a system (temperature, density, and sound velocity in a substance) was found. The generalized Fokker-Planck equation was used to calculate the particle size distribution. The obtained binary distribution function was proved to adequately describe a large array of experimental data in actual physical conditions. It was shown rigorously that the fine-grain phase (powder) results when the viscocrystalline phase is subjected to shear loads. The shape of the distribution turned out to be independent of external actions, i.e., remained the same both on sedimentation and at pressure drop.  相似文献   

12.
This work analyses the microstructure changes of various copper-based powder systems during sintering from 3D images provided by in situ synchrotron microtomography. The investigated systems include a copper powder with a wide particle size distribution of 0–63 µm poured into a quartz capillary, a pre-sintered copper compact with artificially created large pores and a mixture of copper and alumina particles. The experiments were carried out at the European Synchrotron in Grenoble, France. Powders were sintered up to 1060°C under reducing atmosphere in a furnace located between the X-ray source and the detector. During each experiment, 3D images were taken at various times of the thermal cycle. We have obtained images with a resolution of 1.5 µm and the time of acquisition of every image was ~1 min. Quantitative analysis of these images allowed the changes of various important parameters to be followed. Such parameters characterise the sintering process at the particle length scale: interparticle coordination, pore size distribution and particle centre-to-centre distance. Moreover, by tracking the displacement of each particle centre and comparing it to the displacement predicted by classical mean field assumption, we have been able to assess the magnitude of particle rearrangement occurring during sintering. From these data, the sintering behaviour of heterogeneous powder systems is discussed with particular emphasis of collective particle phenomena.  相似文献   

13.
Tin dioxide nanoparticles of different sizes and platinum doping contents were synthesized in one step using the flame spray pyrolysis (FSP) technique. The particles were used to fabricate semiconducting gas sensors for low level CO detection, i.e. with a CO gas concentration as low as 5 ppm in the absence and presence of water. Post treatment of the SnO2 nanoparticles was not needed enabling the investigation of the metal oxide particle size effect. Gas sensors based on tin dioxide with a primary particle size of 10 nm showed signals one order of magnitude higher than the ones corresponding to the primary particle size of 330 nm. In situ platinum functionalization of the SnO2 during FSP synthesis resulted in higher sensor responses for the 0.2 wt% Pt-content than for the 2.0 wt% Pt. The effect is mainly attributed to catalytic consumption of CO and to the associated reduced sensor response. Pure and functionalized tin dioxide nanoparticles have been characterized by Brunauer, Emmett and Teller (BET) surface area determination, X-ray diffraction (XRD), high resolution transmission electron microscopy (HRTEM) and scanning transmission electron microscopy (STEM) while the platinum oxidation state and dispersion have been investigated by X-ray photoelectron spectroscopy (XPS) and extended X-ray absorption fine structure (EXAFS). The sensors showed high stability (up to 20 days) and are suitable for low level CO detection: <10 ppm according to European and 50 ppm according to US legislation, respectively.  相似文献   

14.
全反射X射线荧光光谱(TXRF)分析是一种应用广泛、经济快捷的多元素显微与痕量分析方法。随着现代科技机器自动化的快速发展,样品制备成为TXRF分析定量的关键问题。本实验以茶叶粉末为分析对象,探讨了在TXRF分析过程中分散剂、样品量及粒径对粉末悬浮样品的制样效果、制样过程重复性及测量准确性的影响。结果表明:(1)通过分析粒径范围大于180目的茶叶粉末样品的五个独立重复试样,测试了TXRF法的整体精密度,分析了仪器的稳定性与样品制备过程中的不确定度,结果表明不论在何种元素与浓度范围下,与样品制备步骤相关的不确定度对获得的结果的全局精度都有显著贡献(>60%),样品的制备是分析误差的主要来源;(2)通过将粒径范围大于180目的茶叶粉末样品分散于1% Triton X-100与去离子水两种分散剂中,对分散剂的影响进行了研究,相较于非离子型表面活性剂,去离子水重复性更好,RSD在2.45%~11.64%之间,更适合作为粒径大于180目的茶叶粉末样品的分散剂,使得中、高Z元素的定量更为准确;(3)通过添加不同质量的粉末样品于5 mL去离子水中对样品量进行分析。样品量过低会导致制样重复性较差,而过高的进样量会导致样品薄膜厚度超过射线的测量厚度,有可能不再处于全反射条件下。对于植物粉末样品20 mg/5 mL是一个较为合适的样品量;(4)通过对7种粒径范围的粉末样品进行测量分析,研究了粒径对测量结果的影响。在粒径小于180目的范围内净计数随粒径的减小而增大;在粒径小于200目的范围内精密度随粒径的减小而提升;除Mn之外的元素粒径对准确性未有显著影响;在80~200目的范围内,不确定度迅速降低,大于200目后不确定度低于10%。综合考虑净计数、精密性与准确性,在制样过程中粒径范围建议研磨至200~300目之间,该研究结果可为植物粉末样品制样方法提供有效借鉴。  相似文献   

15.
Equivalent resistance of a polydisperse powder layer struck by an electric spark is evaluated. Particles were computationally created and mixed using discrete element method; the mixing protocol homogenized particle size distribution within the sample. The conductivity was determined from the equivalent resistance network for the simulated powder bed. A plasma streamer attached to a particle on top of the sample. For each particle contact, an electrical breakdown was assumed; each individual contact resistance was calculated considering its geometry and plasma resistivity. Results of calculations compare well with the available experimental data.  相似文献   

16.
An aerosol measurement instrument is presented which allows for the simultaneous measurement of the size distribution, number concentration and velocities of particles. A commercial optical particle counter (OPC) was modified in terms of optics and signal evaluation to provide the required measurement information. The design of this instrument allows the definition of a cubic measuring volume by purely optical means. This is achieved by an aperture/lens system which projects a sharply defined light beam into a stream of aerosol flow. Light scattered from single particles at average angles of 90° is collected by two opposite receiver units, each projecting light on to a separate photomultiplier. The intensity of the scattered light with this instrument is found to be an unambiguous function of the particle size. The total number of particles detected per unit time results in the particle flux. The particle velocity can be calculated, in principle, through the correlation of the signal length and the optical length of the measuring volume, provided that the particles have a straight trajectory through the measuring volume and the measuring volume length in the mean flow direction is well defined. The absence of sharpness in real optical projections effects a border zone of definite length, in which the illumination declines to zero. This leads, together with the low-pass filtering of the particle signals, to an increase in the length of the signal slopes, causing some difficulties in the determination of the signal length. A digital signal evaluation technique was developed that renders possible the clear differentiation between the slope and the kernel region of the signal. The latter represents the motion of particles through the completely illuminated region, which can be a more accurate parameter to define the signal length. In addition to the signal length determination, a cross-correlation technique was tested for its potential to obtain particle velocity. the instrument has two interlaced measuring volumes of nearly the same size, which are shifted for this special application in the main flow direction by 20 μm. The phase difference between the signals from the two photomultipliers, together with the optical distance, yields the particle velocity.  相似文献   

17.
The transport properties of particulate process streams and their final product quality, are directly affected by critical parameters of particle size distribution, f(x), and volume, mass, or number density of particles or dispersed phase droplets. A method is proposed for the potential on-line monitoring of particle size distribution and volume fraction in real time, using frequency-domain photon migration measurements (FDPM). Theory, experimental measurements, and results for the determination of particle size distributions for both a polystyrene latex and a titanium dioxide suspension determined using the photon migration technique are presented. The critical issues associated with the application of photon migration to particulate and dispersed phase processes are discussed, including the effects of interparticle interactions on the transport of light.  相似文献   

18.
为了快速有效评定花椒质量等级,应用近红外光谱分析技术,采用偏最小二乘法,对141份花椒样品粉碎成八种不同颗粒大小的粉末,对近红外光谱分别建立挥发油含量预测模型,当粉末样品颗粒大小为40目时,建立的模型最优,交叉验证测定系数r2141为0.9364,交叉验证误差均方根RMSECV141为0.421。使用105份40目粉末样品近红外光谱所建立的模型对36份样品的预测集进行预测,光谱预处理采用Meancentering vector normalization,谱区在6100.1~5774.2cm-1及4601.6~4424.2cm-1,则预测测定系数r326为0.9862,预测集验证误差均方根RMSEP36为0.192,预测相对标准差RSD36为4.95%,预测相对分析误差RPD36为8.517。研究结果表明,对花椒进行近红外光谱扫描前,粉碎到40目时所建立的近红外光谱模型最佳,使用近红外光谱技术快速有效检测花椒挥发油含量是可行的。  相似文献   

19.
Electrodynamic sensor, which can also be called as tribo-electric sensor, senses the electrostatic charge carried by the particle. The tomography system using electrodynamic sensor is called as tribo-electric tomography system. Source of the signal induced on the electrodynamic sensor is brought by the object to be measured and no excitation circuit is necessary. This electrodynamic sensing is a passive sensing and the fast and light weighted tomography system is expected. On the other hand, most of tomography system, like capacitance tomography or resistance tomography, demands excitation circuit and is an active sensing. The number of measurements with the passive sensing is equal to the number of sensors and that of active sensing is the number of the combinations of two sensors. The passive sensing tomography system demands more sensors to be settled. We plan to improve in reconstructed images by increasing the number of the electrodynamic sensors in tribo-electric tomography system. We investigate the influence of surface area to signal intensity solving the electrical field in the sensing zone using finite element method.  相似文献   

20.
用沉降粒度仪测定,并用对数正态分布参数表示法计算了十几种不同ZnS原料及对应的(Zn,Cd)S:Cu ACEL粉的粒度分布,发现ZnS原料对数正态分布的分散程度lnσ及中心粒径d50对(Zn,Cd)S:Cu粉的粒径分布均有影响,其中前者的影响尤为明显.本文还研究了(Zn,Cd)S:Cu的粒度分布对亮度的影响,发现850℃左右在硫气氛中烧得的(Zn,Cd)S:Cu粉,其沉降平均粒径d为10-30μ时,粒径较大的,用交流电致发光盒测得的亮度大体上较高;沉降d为20-30μ(扫描电镜测d约3-6μ)时,其ACEL亮度性能较好.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号