首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A finite volume method based on stabilized finite element for the two‐dimensional nonstationary Navier–Stokes equations is investigated in this work. As in stabilized finite element method, macroelement condition is introduced for constructing the local stabilized formulation of the nonstationary Navier–Stokes equations. Moreover, for P1 ? P0 element, the H1 error estimate of optimal order for finite volume solution (uh,ph) is analyzed. And, a uniform H1 error estimate of optimal order for finite volume solution (uh, ph) is also obtained if the uniqueness condition is satisfied. © 2007 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2007  相似文献   

2.
A mixed finite element method for second order elliptic problems is considered, where the solution u of the problem and grad u are approximated separately.

It is known that with respect to the L 2-norm the approximation of grad u converges with the same rate as the approximation of u does if the solution is sufficiently smooth. The aim of this note is to show that except a logarithmic term the same holds true with respect to the L -norm.  相似文献   

3.
Considering a singularly perturbed problem with exponential and characteristic layers, we show convergence for non-standard higher-order finite elements using the streamline diffusion finite element method (SDFEM). Moreover, for the standard higher-order space Qp\mathcal {Q}_{p} supercloseness of the numerical solution w.r.t. an interpolation of the exact solution in the streamline diffusion norm of order p+1/2 is proved.  相似文献   

4.
In this paper, we introduce numerical schemes and their analysis based on weak Galerkin finite element framework for solving 2‐D reaction–diffusion systems. Weak Galerkin finite element method (WGFEM) for partial differential equations relies on the concept of weak functions and weak gradients, in which differential operators are approximated by weak forms through the Green's theorem. This method allows the use of totally discontinuous functions in the approximation space. In the current work, the WGFEM solves reaction–diffusion systems to find unknown concentrations (u, v) in element interiors and boundaries in the weak Galerkin finite element space WG(P0, P0, RT0) . The WGFEM is used to approximate the spatial variables and the time discretization is made by the backward Euler method. For reaction–diffusion systems, stability analysis and error bounds for semi‐discrete and fully discrete schemes are proved. Accuracy and efficiency of the proposed method successfully tested on several numerical examples and obtained results satisfy the well‐known result that for small values of diffusion coefficient, the steady state solution converges to equilibrium point. Acquired numerical results asserted the efficiency of the proposed scheme.  相似文献   

5.
Q. Sheng 《PAMM》2007,7(1):1023303-1023304
A novel moving-mesh adaptive finite difference method is proposed for solving 2-dimensional quenching differential equations of the form ut = uxx + uyy + (κ – u)–2. Splitting strategies equipped with proper arc-length adaptations are utilized to achieve the computational efficiency as well as accuracy of the numerical solution of the potentially singular problems. Important results including the monotonicity of the nonlinear finite difference scheme are given. Simulation validations are provided to further demonstrate our conclusions. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
Nonlinear systems with a stationary (i.e., explicitly time independent) right-hand side are considered. For time-optimal control problems with such systems, an iterative method is proposed that is a generalization of one used to solve nonlinear time-optimal control problems for systems divided by phase states and controls. The method is based on constructing finite sequences of simplices with their vertices lying on the boundaries of attainability domains. Assuming that the system is controllable, it is proved that the minimizing sequence converges to an ɛ-optimal solution after a finite number of iterations. A pair {T, u(·)} is called an ɛ-optimal solution if |TT opt| − ɛ, where T opt is the optimal time required for moving the system from the initial state to the origin and u is an admissible control that moves the system to an ɛ-neighborhood of the origin over the time T.  相似文献   

7.
This article proposes and analyzes a multilevel stabilized finite volume method(FVM) for the three‐dimensional stationary Navier–Stokes equations approximated by the lowest equal‐order finite element pairs. The method combines the new stabilized FVM with the multilevel discretization under the assumption of the uniqueness condition. The multilevel stabilized FVM consists of solving the nonlinear problem on the coarsest mesh and then performs one Newton correction step on each subsequent mesh thus only solving one large linear systems. The error analysis shows that the multilevel‐stabilized FVM provides an approximate solution with the convergence rate of the same order as the usual stabilized finite element solution solving the stationary Navier–Stokes equations on a fine mesh for an appropriate choice of mesh widths: hjhj‐12, j = 1,…,J. Therefore, the multilevel stabilized FVM is more efficient than the standard one‐level‐stabilized FVM. © 2013 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2013  相似文献   

8.
We analyze the spatially semidiscrete piecewise linear finite volume element method for parabolic equations in a convex polygonal domain in the plane. Our approach is based on the properties of the standard finite element Ritz projection and also of the elliptic projection defined by the bilinear form associated with the variational formulation of the finite volume element method. Because the domain is polygonal, special attention has to be paid to the limited regularity of the exact solution. We give sufficient conditions in terms of data that yield optimal order error estimates in L2 and H 1 . The convergence rate in the L norm is suboptimal, the same as in the corresponding finite element method, and almost optimal away from the corners. We also briefly consider the lumped mass modification and the backward Euler fully discrete method. © 2004 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2004  相似文献   

9.
Coupling techniques are essential to combining different numerical methods together for the purpose of solving an elliptic boundary value problem. By means of nonconforming constraints, the combinations of various Lagrange finite element methods often cause reduced rates of convergence. In this article, we present a method using penalty plus hybrid technique to match different finite element methods such that the optimal convergence rates in the ‖ · ‖h and zero norms of errors of the solution can always be achieved. Also, such a coupling technique will lead to an optimal asymptotic condition number for the associated coefficient matrix. Moreover, this study can easily be extended for combining the finite difference method with the finite element method to also yield the optimal rate of convergence.  相似文献   

10.
It is well known that convergence rate of finite element approximation is suboptimal in the L2 norm for solving biharmonic equations when P2 or Q2 element is used. The goal of this paper is to derive a weak Galerkin (WG) P2 element with the L2 optimal convergence rate by assuming the exact solution sufficiently smooth. In addition, our new WG finite element method can be applied to general mesh such as hybrid mesh, polygonal mesh or mesh with hanging node. The numerical experiments have been conducted on different meshes including hybrid meshes with mixed of pentagon and rectangle and mixed of hexagon and triangle.  相似文献   

11.
In the present study, the operator splitting techniques based on the quintic B‐spline collocation finite element method are presented for calculating the numerical solutions of the Rosenau–KdV–RLW equation. Two test problems having exact solutions have been considered. To demonstrate the efficiency and accuracy of the present methods, the error norms L2 and L with the discrete mass Q and energy E conservative properties have been calculated. The results obtained by the method have been compared with the exact solution of each problem and other numerical results in the literature, and also found to be in good agreement with each other. A Fourier stability analysis of each presented method is also investigated.  相似文献   

12.
We consider the finite element approximation of the Laplacian operator with the homogeneous Dirichlet boundary condition, and study the corresponding Lagrange interpolation in the context of finite element superconvergence. For d‐dimensional Qk‐type elements with d ≥ 1 and k ≥ 1, we prove that the interpolation points must be the Lobatto points if the Lagrange interpolation and the finite element solution are superclose in H1 norm. For d‐dimensional Pk‐type elements, we consider the standard Lagrange interpolation—the Lagrange interpolation with interpolation points being the principle lattice points of simplicial elements. We prove for d ≥ 2 and k ≥ d + 1 that such interpolation and the finite element solution are not superclose in both H1 and L2 norms and that not all such interpolation points are superconvergence points for the finite element approximation. © 2003 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 20: 33–59, 2004.  相似文献   

13.
The mortar finite element method is a special domain decomposition method, which can handle the situation where meshes on different subdomains need not align across the interface. In this article, we will apply the mortar element method to general variational inequalities of free boundary type, such as free seepage flow, which may show different behaviors in different regions. We prove that if the solution of the original variational inequality belongs to H2(D), then the mortar element solution can achieve the same order error estimate as the conforming P1 finite element solution. Application of the mortar element method to a free surface seepage problem and an obstacle problem verifies not only its convergence property but also its great computational efficiency. © 2007 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2008  相似文献   

14.
15.
In this paper, we consider low‐order stabilized finite element methods for the unsteady Stokes/Navier‐Stokes equations with friction boundary conditions. The time discretization is based on the Euler implicit scheme, and the spatial discretization is based on the low‐order element (P1P1 or P1P0) for the approximation of the velocity and pressure. Moreover, some error estimates for the numerical solution of fully discrete stabilized finite element scheme are obtained. Finally, numerical experiments are performed to confirm our theoretical results.  相似文献   

16.
In this paper, we consider a two‐dimensional multi‐term time‐fractional Oldroyd‐B equation on a rectangular domain. Its analytical solution is obtained by the method of separation of variables. We employ the finite difference method with a discretization of the Caputo time‐fractional derivative to obtain an implicit difference approximation for the equation. Stability and convergence of the approximation scheme are established in the L ‐norm. Two examples are given to illustrate the theoretical analysis and analytical solution. The results indicate that the present numerical method is effective for this general two‐dimensional multi‐term time‐fractional Oldroyd‐B model.  相似文献   

17.
We study convergence properties of a finite element method with lumping for the solution of linear one-dimensional reaction–diffusion problems on arbitrary meshes. We derive conditions that are sufficient for convergence in the L norm, uniformly in the diffusion parameter, of the method. These conditions are easy to check and enable one to immediately deduce the rate of convergence. The key ingredients of our analysis are sharp estimates for the discrete Green function associated with the discretization. AMS subject classification 65L10, 65L12, 65L15  相似文献   

18.
This paper discusses a finite element approximation for an integral equation of the second kind deduced from a potential theory boundary value problem in two variables. The equation is shown to admit a unique solution, to be variational and coercive in the Hilbert space of functions σ ε H1/2(Γ), frd γ = 0. The Galerkin method with finite elements as trial functions is shown to lead to an optimal rate of convergence.  相似文献   

19.
We study a finite element method applied to a system of coupled wave equations in a bounded smooth domain in \mathbbRd {\mathbb{R}^d} , d = 1, 2, 3, associated with a locally distributed damping function. We start with a spatially continuous finite element formulation allowing jump discontinuities in time. This approach yields, L 2(L 2) and L (L 2), a posteriori error estimates in terms of weighted residuals of the system. The proof of the a posteriori error estimates is based on the strong stability estimates for the corresponding adjoint equations. Optimal convergence rates are derived upon the maximal available regularity of the exact solution and justified through numerical examples. Bibliography: 14 titles. Illustrations: 4 figures.  相似文献   

20.
In this article, the existence of a global strong solution for all finite time is derived for the Kirchhoff's model of parabolic type. Based on exponential weight function, some new regularity results which reflect the exponential decay property are obtained for the exact solution. For the related dynamics, the existence of a global attractor is shown to hold for the problem when the non-homogeneous forcing function is either independent of time or in L(L2). With the finite element Galerkin method applied in spatial direction keeping time variable continuous, a semidiscrete scheme is analyzed, and it is also established that the semidiscrete system has a global discrete attractor. Optimal error estimates in L(H1) norm are derived which are valid uniformly in time. Further, based on a backward Euler method, a completely discrete scheme is analyzed and error estimates are derived. It is also further, observed that in cases where f = 0 or f = O(e0t) with γ0 > 0, the discrete solutions and error estimates decay exponentially in time. Finally, some numerical experiments are discussed which confirm our theoretical findings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号