首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Samples, representative of certain classes of “high molecular weight” and/or less volatile substances, were analyzed by gas chromatography utilizing a new generation of aluminum clad flexible fused silica glass capillary columns containing thin films of a methyl polysioxane stationary phase capable of being operated isothermally to 400–425°C and temperature programmed to 425–440°C. The results obtained here were compared with those described in the literature discussing the latest advances in Supercritical Fluid Chromatography (SFC) in the analysis of precisely the same types of samples. In all instances, the gas chromatographic method provided superior speed of analysis, superior column efficiency, and superior resolution of the component bands. This was due to fundamental factors, favoring the diffusivity of the solutes in both the gas and liquid phases in this process at these high temperatures. Under these circumstances, it is thought that the strength of SFC mainly lies in the analysis of thermally labile samples until the advocates of this technique make more definitive strides in the handling of still higher molecular weight substances well beyond the newly expanded range of gas chromatography.  相似文献   

2.
A commercially available silanol terminated silicone stationary phase, OV-61-OH (33% phenyl), and two phenyl-substituted siloxane/silarylene copolymers, Sila 3 (27% phenyl) and 4 (35% phenyl), have been evaluated for use as stationary phases in fused silica capillary columns for gas chromatography. Ulterations in column adsorptive activity, separation efficiency, stationary phase film thickness and selectivity after column conditioning for 50 h at 370°C have been studied. A high thermal stability was experienced with the stationary phases tested here. For OV-61-OH, the best thermal stability was obtained when coated on untreated fused silica, which illustrates the importance of grafting reactions here. The heat treatment resulted in some deactivation of adsorptive sites in the column. A higher degree of column deactivation was achieved when surface silylation was performed prior to coating. High thermal stability was achieved with Sila 3 when coated on such surfaces. Sila 3 would thus be preferred in cases when high thermal stability in combination with high dsorptive inertness is desired. Sila 4 showed low column bleeding at 370 °C, but prolonged heating at this temperature resulted in the broadening of n-alkane peaks when eluted at 90 °C. This indicates that excessive crosslinking has taken place during the heat treatment and the minimum allowable column operation temperature is thereby increased to ca. 120 °C. The separation of aza-arenes and of triglycerides are shown as applications.  相似文献   

3.
A porous polymer is deposited on the inner wall of fused silica capillary columns. The retention characteristics of this porous polymer were evaluated and found to be comparable with Porapak Q. The porous polymer has a high retention volume which enables the separation of permanent gases at ambient temperatures or higher. The hydrophobic character of the porous polymer allows the injection of water containing samples without changing retention due to adsorption of water. The inertness of the porous polymer allows the elution of a range of apolar and polar compounds. The maximum temperature of the porous polymer was estimated to be 250°C. With this new type of capillary column, high resolution separations are obtained in combination with short analysis times.  相似文献   

4.
The deactivation of fused silica capillary columns with a laboratory-made poly-diphenylvinylmethylhydrosiloxane copolymer has been investigated. The deactivation obtained at different temperatures and reaction times is characterized with a dual column capillary GC system [1]. In parallel, the effect of the silylation temperatures and reaction times on the nature, the structure, and the chemical properties of the deactivation layer has also been studied by solid-state 29Si NMR spoctroscopy. A fumed silica, Cab-O-Sil M5, was used as a model substrate for these spectroscopic studies. The deactivated fused silica capillaries show an excellent thermal stability (up to 400°C), a high resistance to solvolysis, and a minimal interaction to various critical test components. A good wettability of the fused silica capillary columns deactivated with this reagent was confirmed by successful subsequent coating with polysiloxanes with different phenyl contents.  相似文献   

5.
The gas chromatographic use of flexible thin walled soft glass capillary columns coated with non-polar stationary phases is compared to similar columns made of fused silica glass. With non-polar soft glass columns, the use of surface roughening viagaseous HCI followed by a Carbowax 20 M pretreatment gave adsorptive phenomena, and thermal instability. With very polar soft glass columns where a variety of cyanopropyl silicone phases were coated directly onto the NaCI crystal matrix, adsorptive effects were again prominent and frequent break-down in film stability with time, was also observed. These undesirable effects were due to the presence of metal oxides in the soft glass. Attempts to remove these materials from the thin walled soft glass surface by means of acid leaching produced significant brittleness. This deleterious result was further increased by attempts at high temperature silylation or polysiloxane deactivation. In sharp contrast, the fused silica surface was essentially free of metal oxides and the surface silanol groups are easily neutralized by silylation or polysiloxane deactivation techniques. No brittleness was observed following these procedures. An increasing series of high molecular weight, viscous, polymeric vinyl containing non-polar and highly polar stationary phases have been produced which readily wet the surface of the fused silica and are easily crosslinked in the presence of free radical generators. These columns are essentially free of all the problems noted with flexible thin walled soft glass. When all of the parameters involved in the fabrication of a glass capillary column are assessed, it appears at this time, that the flexible fused silica glass column with cross linked phases approaches the “ideal” capillary column.  相似文献   

6.
Hold-up times and peak widths have been measured in long fused silica GC capillary columns at high temperature with helium as the carrier gas. The results lead to the conclusion that the helium permeates through the column walls. The conventional Poiseuille theory of carrier gas flow has been extended to include this phenomenon. The resulting “loss modified Poiseuille” model, which uses literature values for the permeability of fused silica to helium, has been used to simulate the observed behavior. Good agreement between simulation and experiment validates the model. Simulations have been used to explore the effect of column permeability on hold-up times, peak widths, and velocity profiles over a broad range of column geometries.  相似文献   

7.
A 30 m, 0.25 mm ID, fused silica capillary column at temperatures from –60 to –100°C has been shown to be a quantitative trap for organic compounds with volatilities ranging from that of 1, 1 -dichloroethene that of chlorobenzene. This type of “whole column cryotrapping” provided sharp peaks (peak width approximately 4–7 seconds) for all compounds at a trapping temperature of –80°C and with high carrier gas pressures and linear velocities (30 psi and 110 cm/s, respectively). Whole column cryotrapping possesses great simplicity, chromatographic efficiency (no trapping loop connections), and a built-in indicator of quality assurance for trapping efficiency (i.e., peak shape). These advantages are extremely attractive and are indicative of the fact that the potential of this approach has not yet been fully appreciated.  相似文献   

8.
N. Wu  Q. Tang  Y. Shen  M. L. Lee 《Chromatographia》1999,49(7-8):431-435
Summary In this paper, practical considerations of column efficiency, separation speed, thermal stability, and column polarity of capillary columns packed with polybutadiene-coated zirconia were investigated under solvating gas chromatography (SGC) conditions using carbon dioxide as mobile phase. When compared with results obtained from conventional porous octadecyl obtained from conventional porous octadecyl bonded silica (ODS) particles, PBD-zirconia particles produced greater change in mobile phase linear velocity with pressure than conventional ODS particles under the same conditions. The maximum plate number per second (Nt) obtained with a 30 cm PBD-zirconia column was approximately 1.5 times higher than that obtained with an ODS column at 100 °C. Therefore, the PBD-zirconia phase is more suitable for fast separations than conventional ODS particles in SGC. Maximum plate numbers per meter of 76,900 and 63,300 were obtained using a 57 cm×250 μm i.d. fused silica capillary column packed with 3 μm PBD-zirconia at 50 °C and 100 °C, respectively. The PBD-zirconia phase was stable at temperatures up to 320 °C under SGC conditions using carbon dioxide as mobile phase. Polarizable aromatic compounds and low molecular weight ketones and aldehydes were eluted with symmetrical peaks from a 10 cm column packed with 3 μm PBD-zirconia. Zirconia phases with greater inertness are required for the analysis of more polar compounds by SGC.  相似文献   

9.
A layer of elemental silicon has been deposited on the surface of stainless steel tubing by means of chemical vapor deposition (CVD). Two kinds of capillary column were prepared from the deactivated tubing: cross-linked, silanol-terminated polydime-thylsiloxane wall coated open tubular (WCOT) columns and molecular sieve 13X porous layer open tubular (PLOT) columns. Unlike fused silica capillary columns, stainless steel WCOT and PLOT columns can be operated at temperatures in excess of 400°C. High temperature simulated distillation has been performed successfully with a macro bore WCOT column and rapid PNA (paraffin, naphthene, and aromatic) analysis with a multidimensional gas solid chromatographic (GSC) system using PLOT columns.  相似文献   

10.
A chiral stationary phase prepared by bonding L -valine-t-butylamide to XE-60 has been coated on glass and metal capillaries. The performances of the chiral glass and metal columns were equivalent to those of commercial fused silica capillary columns. The thermal stability of the glass column was examined up to 280°C. It was found that no appreciable change in separation factor (α value) was observed up to 230°C. The α values gradually decreased between 240 and 260°C, and enantiomer separation was no longer achieved at 280°C. It was concluded that the allowable upper limit temperature of the chiral stationary phase is between 230 and 240°C in the isothermal mode, and ca 260°C in temperature-programmed mode.  相似文献   

11.
The characterization of heavy petroleum fractions is essential for the design and improvement of cracking plants converting heavy feedstock into valuable “white” products. Conventional simulated distillation methods using packed columns are unsuitable for this purposes, being limited to boiling points up to about 600°C. The method presented is able to cover a boiling points interval ranging from about 150°C up to around 800°C. It employs a short, nonpolar, highly thermostable capillary column routinely operated at temperatures around 430°C. The analytical system is based on a high temperature versions of a fully automatic, capillary dedicated gas chromatograph. The experimental data demonstrate that cold on-column injection is the sole sampling system suitable for such heavy compounds. The conversion of the retention times into boiling points, based on the use of low molecular weight polyethylenes, is extremely reliable, as demonstrated by the excellent retention time reproducibilities. The lower part (up to 550–600°C TBP) of the boiling point distribution curves of heavy petroleum fractions obtained on capillary columns fits well with the corresponding distribution curves based on packed column data. For the petroleum fractions fully eluted from the column the quantitative results obtained either using internal standards or by direct processing of the elution curves are in excellent agreement (less than 0.3 weight% differences). The method has been applied to the determination of the true boiling points corresponding to short path vacuum distillation (DISTACT) cut points over 300°C.  相似文献   

12.
The thermal stability of silicones can be improved on replacement of certain of the oxygen atoms in the polymer backbone by phenyl groups. Such a polymer has been synthesized and evaluated for use as stationary phase in fused silica capillary gas chromatography; the polymer was dimethyl substituted and silanol terminated. A selectivity was provided by the phenyl groups in the backbone. For comparative purposes, a silanol-terminated dimethylpolysiloxane has also been evaluated. Both stationary phases gave columns of highest separation efficiency and the supporting fused silica surface was deactivated by the stationary phases on thermal treatment. Further, low column bleeding was observed at the maximum temperature tested, 370°C. The phenyl-containing phase could be immobilized to 60% by heat treatment, but the pure dimethylpolysiloxane was 10% immobilized. The influence on immobilization of factors such as nature of the supporting surface, stationary phase silanol content, reaction temperature and atmosphere in the column during reaction has been studied.  相似文献   

13.
During the development of a GC retention index library very rigorous standard parameters were used in the SADTLER laboratories. Because most chromatographers presumably have their “favourite” and well-proven columns a study has been carried out on how to make use of them for standard index generation. Variables such as column geometry, split ratio, and film thickness were examined and the calculated indices were compared to some “basic” values. Splitless and cool on-column injection techniques were also investigated and comparable temperature programming indices have been obtained. Finally, standard index values of 53 volatile halogenated hydrocarbons measured on very thick-film bonded fused silica capillary columns are tabulated.  相似文献   

14.
A novel polyphenyl-grafted polysiloxane stationary phase named 3,4-bis(2-fluoro-5-(trifluoromethyl)phenyl)-2,5-diphenyl phenyl grafted polysiloxane stationary phase (FFMP) was synthesized through a Diels–Alder reaction with a high column efficiency (average number of plates: 3700 plates/m; achieved by naphthalene at 120 °C) and simultaneously coated on fused silica capillary tubes to prepare a gas chromatographic column with excellent performance. The column performance test results indicated that the FFMP columns could work properly up to 360 °C, as evidenced by the chromatogram of the polyethylene pyrolysis mixture. The thermogravimetric analysis curve showed that the decomposition temperature of the FFMP was up to 380 °C. The FFMP columns were also applied in the separation and analysis of multimixtures, such as Grob test mixtures, benzene mixtures and fatty acid esters, and as well as a medium polar stationary phase (according to the results of McReynolds constants, the sum of ?I was 779.) The FFMF columns exhibited excellent separation selectivity for these substances because of the conjugated system formed by the polyphenyl side chain connected by single bonds. This conjugated system can promote the delocalization of π-electrons as well as enhance the forces of π–π interaction, and the dipole-induced dipole action between the FFMP stationary phase and the analytes.  相似文献   

15.
The effects of trapping temperature and column film thickness were investigated with respect to their ability to promote effective cryofocusing on fused silica capillary columns. The study was a further development of the purge and trap with whole column cryotrapping (P&T/WCC) method. The rates at which compounds could be thermally desorbed from a P&T unit and transferred to a column (with zero split) were first examined. A near quantitative transfer of the desorbable analytes was obtained with a 4 min, 180°C, 20 mL/min desorption. The compounds tested included naphthalene. Columns with film thicknesses from 0.12 to 3.0 μm were then investigated in P&T/WCC analyses with WCC temperatures ranging from ?80 to 0°C. The trapping took place from a transfer line gas stream initially at 175°C. The volatilities of the compounds examined varied from that of 1,1-dichloroethene to 1,1,2,2-tetrachloroethane. A higher film thickness was found to ease the WCC temperature requirements. Within each column type, the warmest WCC temperatures which allowed good cryotrapping with no significant increases in peak width were: 0.25 μm, ?70°C; 1.0 μm, ?50°C; 3.0 μm, ?20°C. In addition to being quantitative, the trapping provided good chromatography.  相似文献   

16.
Monolithic capillary columns have been prepared in fused‐silica capillaries by radical co‐polymerization of ethylene dimethacrylate and butyl methacrylate in the presence of porogen solvent mixtures containing various concentration ratios of 1‐propanol, 1,4‐butanediol, and water with azobisisobutyronitrile as the initiator of the polymerization reaction. The through pores in organic polymer monolithic columns can be characterized by “equivalent permeability particle size”, and the mesopores with stagnant mobile phase by “equivalent dispersion particle size”. Increasing the concentration of propanol in the polymerization mixture diminishes the pore volume and size in the monolithic media and improves the column efficiency, at a cost of decreasing permeability. Organic polymer monolithic capillary columns show similar retention behaviour to packed alkyl silica columns for compounds with different polarities characterized by interaction indices, Ix, but have different methylene selectivities. Higher concentrations of propanol in the polymerization mixture increase the lipophilic character of the monolithic stationary phases. Best efficiencies and separation selectivities were found for monolithic columns prepared using 62–64% propanol in the porogen solvent mixture. To allow accurate characterization of the properties of capillary monolithic columns, the experimental data should be corrected for extra‐column contributions.  相似文献   

17.
Retention gaps with different polarity treatments were evaluated for reversed phase solvents. Aminopropyl- and cyanopropyl-deactivated retention gaps showed the best results for methanol-water mixtures. A reversed phase packed fused silica capillary LC column is connected on-line with a capillary gas chromatography column. The combination was used for the analysis of diazepam in urine. Volume overloading on packed fused silica columns without loss of too much efficiency was demonstrated for propranolol.  相似文献   

18.
A method is described for surface deactivation and modification of fused silica capillary columns with a cyanopropyl-containing reagent. The deactivation procedure involved a dehydrocondensation reaction between a bis(cyanopropyl)methylhydropolysiloxane reagent and surface silanol groups at an optimum temperature of only 250°C. Actual critical surface tension measurements were made using the capillary rise method. Excellent deactivation for acidic and basic compounds at the low ng level, and wettability for nonpolar and polar polysiloxane stationary phases were obtained. A procedure was developed to remove acidic impurities that are present in polar stationary phases.  相似文献   

19.
An investigation was conducted of various glasses, other than soda lime or borosilicate, for use in glass capillary gas chromatography. The work has uncovered some unique chromatographic qualities in the use of potash soda lead and fused silica glasses as materials for making glass capillary columns. The fused silica proved to be an ideal material for capillary column construction, being inherently more inert than glass containing metal oxides. It has been shown that through the use of thin wall capillary tubing of high flexibility many of the mechanical problems associated with glass capillary columns, such as fragility and column straightening, can be avoided.  相似文献   

20.
Ways of utilizing the true separation efficiency of monolithic silica (MS) columns were studied. The true performance of MS columns, both regular-sized (rod-type clad with PEEK resin, 4.6 mm ID, 10 cm) and capillary sized (in 100 or 200 microm ID fused silica capillary, 25-140 cm) was evaluated by calculating the contribution of extra-column effects. HETP values of 7-9 microm were observed for solutes having retention factors (kvalues) of up to 4 for rod columns and up to 15 for a capillary column. The high permeability of MS columns allowed the use of long columns, with several connected together in the case of rod columns. Narrow-bore connectors gave good results. Peak variance caused by a column connector ranges from 50 to 70% of that caused by one rod-type column for up to three connectors or four columns in 80% methanol, but the addition of a 4th or 5th connector to add a 5th and 6th column, respectively, caused a much greater increase in peak variance, especially for long-retained solutes, which is greater than the variance caused by one rod column. Rod columns seem to show slightly lower efficiency at a pressure higher than 10 MPa or so. The use of acetonitrile-water as a mobile phase better preserved the ability of individual rod columns to generate up to 100,000 theoretical plates with 14 columns connected. Methods for eliminating extra-column effects in micro-HPLC were also studied. Split injection and on-column detection resulted in optimum performance. A long MS capillary measuring 140 cm produced 160,000 theoretical plates. The column efficiency of a capillary column was not affected by the pressure, showing advantages over the rod columns that exhibited peak broadening caused by connectors and pressure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号