首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Recently, much attention has been devoted towards the development of methods for the capture and separation of inorganic gases and organic compounds with high selectivity and efficiency using nanoporous materials. Unlike metal–organic frameworks and covalent organic network polymer, nanoporous molecular crystals (NMCs) do not have extended network structures through coordination or covalent bonding. Instead, they are composed of discrete organic molecules with only weak noncovalent interactions between them. Calixarenes, used as artificial hosts for molecular recognition, constitute a representative class of NMCs that exhibit “porosity without pores.” Despite the absence of empty-channels, calixarene crystals can absorb various inorganic gases and organic compounds, thereby undergoing a guest-induced structural change. Thus, because of their ability to precisely discriminate between molecules of similar sizes and structures, such NMCs show great potential for application as separation materials. This review summarizes reports on the absorption and inclusion of inorganic gases and organic molecules with crystals of calixarenes and their derivatives and discusses their potential as separation materials.  相似文献   

2.
Silicon and its compounds have made possible the design of new materials, which, from computers to space travel, have helped to shape the technology of our 20th century. Conversely, the demands of new technology have stimulated the fast development of silicon chemistry as part of the “renaissance” of inorganic chemistry. This article uses selected examples of predominantly organosilicon compounds to discuss in simplified terms the measurement and assignment of suitable spectroscopic “molecular fingerprints” as well as the resulting benefit for the preparative chemist. The comparison of “equivalent” states of “chemically related” molecules is emphasized, based on perturbation arguments and supporting quantum-chemical models. Special attention is given to the relation between structure and energy, which allows us to understand and to predict the connectivity between and the spatial arrangement of silicon “building blocks”, the energy-dependent electron distribution over the effective nuclear potentials of a molecular framework, and, especially, the partly considerable effects of “silicon substituents” on molecular properties. Future-directed extensions and applications include polysilane band structures, Rydberg states of chromophores containing silicon centers, redox reactions and ion-pair formation of silicon-substituted π systems, and molecular dynamic phenomena in solution or on thermal fragmentation in the gas phase. The main objective is a set of clear and practical rules for interpreting measurements and planning experiments.  相似文献   

3.
Porous carbon counter electrodes have been fabricated at low temperature by coating an organic binder free carbon slurry onto F-doped tin oxide conducting glass. The carbon slurry is prepared by ball-milling a dispersion of activated carbon in aqueous SnCl4 solution. During ball-milling, SnCl4 hydrolyzes and transforms into stannic acid gel, which acts as an inorganic “glue” to connect the carbon particles during film preparation. Dye-sensitized solar cells employing this carbon electrode achieve efficiency as high as 6.1% which is comparable to that of the cells using sputtering Pt as counter electrode.  相似文献   

4.
Here we report on the sol–gel synthesis of porous inorganic materials based on manganese, molybdenum, and tungsten compounds using the “core–shell” siloxane-acrylate latex as a template. The chemical composition and structural characteristics of the materials obtained have been investigated. It was shown that temperature conditions and gaseous media composition during the template destruction controlled the composition and structure of porous materials. To obtain porous inorganic materials for catalytic applications, the “core–shell” latex template was preliminarily functionalized by gold and palladium nanoparticles obtained by thermal reduction of noble metal ions-precursors in a polycarboxylic “shell”. Upon the template removal, noble metals nanoparticles of a size of dozens of nanometers were homogeneously distributed in the material porous structure. The evaluation of the catalytic activity of macroporous manganese, tungsten, and molybdenum oxides under the conditions of liquid phase catalytic oxidation of organic dyes has been performed. The prospects of employing macroporous oxide systems with immobilized nanoparticles of noble metals in the processes of hydrothermal oxidation of radionuclide organic complexes in radioactive waste decontamination have been demonstrated.  相似文献   

5.
Water–electrolyte systems containing aqueous solutions of Group I–III metal, transition metal, and lanthanide nitrates, iodates, sulfates, acetates, orthophosphates, chlorides, and fluorides, inorganic acids, as well as aqueous and nonaqueous solutions of some of organic compounds (alcohols, acids, aromatic hydrocarbons) have been studied. The research methodology developed at the Institute of General and Inorganic Chemistry, RAS, and the analysis of experimental data have no analogues in our country and abroad. On the basis of the results obtained, general tendencies of glass formation in various water–electrolyte systems have been revealed. For the first time, a polymeric structure of glass-forming compositions of a number of water–electrolyte systems has been proved. The assumption is made that the nature of glass formation in water–electrolyte systems is the same as in systems containing “classical glass” (phosphates, silicates, and others) and organic glass-forming systems, that is, polymeric nature.  相似文献   

6.
An amorphous monomeric glass is defined as a mixture of compatible organic monomeric molecules with an infinitely low crystallization rate under the most favorable conditions. These mixtures can be formed in a one-part reaction of a multifunctional nucleus with a mixture of substituents. The “noncrystallizability” of the mixture is controlled by the structural dissymmetry of the nucleus and/or the substituents and the number of components making up the mixture. We have developed an equation to calculate the number of components in a given mixture, knowing the structure and functionality of the nucleus and the number of substituents. An HPLC characterization method was developed and used to investigate the effects of various reaction conditions on the component concentration distributions and physical properties of the resulting materials. A dissymmetry number defined as the total weight percent of odd-substituted components is believed to be a potential measure of the “noncrystallizability” of the mixture. Physical properties such as glass-transition temperature can be dramatically increased through controlled oligomerization at the price of a moderate increase in melt viscosity. The organic monomeric glasses, like amorphous polymers, have good film-forming properties. However, unlike polymers, they display extremely low melt-viscosities and large positive entropy-of-mixing values and can be ground easily into extremely small particles. These properties make them ideal for certain applications where compatibility, melt-flow, and small particle size are important.  相似文献   

7.
“Aqua materials” that contain water as their major component and are as robust as conventional plastics are highly desirable. Yet, the ability of such systems to withstand harsh conditions, for example, high pressures typical of industrial applications has not been demonstrated. We show that a hydrogel‐like membrane self‐assembled from an aromatic amphiphile and colloidal Nafion is capable of purifying water from organic molecules, including pharmaceuticals, and heavy metals in a very wide range of concentrations. Remarkably, the membrane can sustain high pressures, retaining its function. The robustness and functionality of the water‐based self‐assembled array advances the idea that aqua materials can be very strong and suitable for demanding industrial applications.  相似文献   

8.
A “chemical system” is defined as an assemblage of molecules that collectively does something interesting or useful. The key word here is “collectively”, a word that implies an interdependency and a group behavior that can be quite different from that of individual molecules. Batteries, computer chips, concrete, mayonnaise, shampoo, paint, liquid crystal displays, composites, and viruses are all examples of commonly encountered systems. A host–guest or “supramolecular” complex, on the other hand, would not be considered a system (as defined here), because only two species are involved. A chemical system is multimolecular, a collection of molecules interlocked in a tangle of dependencies. The review delves into a variety of chemical systems investigated by the author, including micelles, water pools, films, vesicles, and polymers. All of them can be categorized as “self-assembling” or “self-organizing” in the sense that defined structures arise spontaneously owing to noncovalent forces among the component molecules. Such chemical systems are useful for many purposes, including decontamination of environmentally dangerous substances, drug delivery, and separation of organic compounds.  相似文献   

9.
Recently, emerging functions utilizing phenolic molecules, such as surface functionalizing agents or bioadhesives, have attracted significant interest. However, the most important role of phenolic compounds is to produce carbonized plant matter called “coal”, which is widely used as an energy source in nearly all countries. Coalification is a long‐term, high‐temperature process in which phenols are converted into conducting carbonized matter. This study focuses on mimicking coalification processes to create conducting sealants from non‐conducting phenolic compounds by heat treatment. We demonstrate that a phenolic adhesive, tri‐hydroxybenzene (known as pyrogallol), and polyethylenimine mixture initially acts as an adhesive sealant that can be converted to a conducting carbon sealing material. The conductivity of the phenolic sealant is about 850 Ω?1 cm?1, which is an approximately two‐fold enhancement of the performance of carbon matter. Applications of the biomimetic adhesives described herein include conducting defect sealants in carbon nanomaterials and conducting binders for metal/carbon or ceramic/carbon composites.  相似文献   

10.
由于环八四噻吩具有独特的"马鞍形"空间结构和光电性质,因此受到越来越多的关注.环八四噻吩(COThs)共有14种同分异构体,其中COTh-1是一类特殊的聚集诱导发光体系,但仅在四氢呋喃等少数有机溶剂中有一定的溶解度,发光强度较弱,限制了这类材料的应用.多孔二氧化硅纳米材料具有比表面积大、孔体积大、粒径可调、生物相容性好...  相似文献   

11.
Research on redox-flow batteries (RFBs) is currently experiencing a significant upturn, stimulated by the growing need to store increasing quantities of sustainably generated electrical energy. RFBs are promising candidates for the creation of smart grids, particularly when combined with photovoltaics and wind farms. To achieve the goal of “green”, safe, and cost-efficient energy storage, research has shifted from metal-based materials to organic active materials in recent years. This Review presents an overview of various flow-battery systems. Relevant studies concerning their history are discussed as well as their development over the last few years from the classical inorganic, to organic/inorganic, to RFBs with organic redox-active cathode and anode materials. Available technologies are analyzed in terms of their technical, economic, and environmental aspects; the advantages and limitations of these systems are also discussed. Further technological challenges and prospective research possibilities are highlighted.  相似文献   

12.
White‐light‐emitting materials and devices have attracted enormous interest because of their great potential for various lighting applications. We herein describe the light‐emitting properties of a series of new difunctional organic molecules of remarkably simple structure consisting of two terminal 4‐pyridone push–pull subunits separated by a polymethylene chain. They were found to emit almost “pure” white light as a single organic compound in the solid state, as well as when incorporated in a polymer film. To the best of our knowledge, they are the simplest white‐light‐emitting organic molecules reported to date.  相似文献   

13.
Pyramidal cations are discussed with reference to their role as the connecting link between organic and inorganic chemistry. The electronic structure of these ions is treated with respect to their physical and chemical properties, namely charge distribution, geometry, and quenching reactions with nucleophiles. The chemistry in the gas phase of certain carbenium ions, in particular the scrambling of carbon atoms, is readily explicable by invoking transition states or intermediates of pyramidal structure. Moreover, the behavior of unimolecular processes can be understood in terms of transition states in which a hydrogen molecule is positioned as a “side-on” or an “end-on” ligand.  相似文献   

14.
15.
Recently, emerging functions utilizing phenolic molecules, such as surface functionalizing agents or bioadhesives, have attracted significant interest. However, the most important role of phenolic compounds is to produce carbonized plant matter called “coal”, which is widely used as an energy source in nearly all countries. Coalification is a long-term, high-temperature process in which phenols are converted into conducting carbonized matter. This study focuses on mimicking coalification processes to create conducting sealants from non-conducting phenolic compounds by heat treatment. We demonstrate that a phenolic adhesive, tri-hydroxybenzene (known as pyrogallol), and polyethylenimine mixture initially acts as an adhesive sealant that can be converted to a conducting carbon sealing material. The conductivity of the phenolic sealant is about 850 Ω−1 cm−1, which is an approximately two-fold enhancement of the performance of carbon matter. Applications of the biomimetic adhesives described herein include conducting defect sealants in carbon nanomaterials and conducting binders for metal/carbon or ceramic/carbon composites.  相似文献   

16.
Abstract

In recent years methods have been developed to determine organic halogen at the μg/1 level in water samples by adsorbing these compounds on active carbon and by detecting the inorganic halides formed after conversion of the adsorbates by pyrohydrolysis. Applying these techniques the analysis of the so-called group parameter “Adsorbable Organic Halogen (AOX)” is performed.

The distinction of each of the halogens in the group parameter AOX and the determination of the parameter “adsorbable organic sulfur compounds (AOS)” can be realized using ion-chromatography for the detection of the anions, obtained after pyrohydrolysis of the adsorbed organic compounds.

Further investigations have shown good adsorption capacity of a newly developed nearly chlorine- and sulfur-free active carbon for organic model substances. This report presents the examinations concerning pyrohydrolysis of the organic solutes and absorption of the formed inorganic species.

The conditions for complete conversion of the model substances and high recovery rates in inorganic anions have been proved successfully. The optimization of the pyrohydrolysis apparatus and of the combustion conditions have been performed and proved with good results.  相似文献   

17.
Solid‐state luminescence of organic dyes is an elusive frontier, and understanding and designing solid‐state stimuli‐responsive materials is not trivial. “Mechanoluminescence” (ML) or “triboluminescence” (TL), which is associated with fracture or force‐initiated luminescence from a material, is currently attracting new interest. Fracturing the surfaces of organic crystals ordered in noncentrosymmetric space groups can electronically excite the surface and neighboring molecules through piezo‐ or pyroelectric effects, and this can result in luminescence when the molecules relax back to their ground states. The combined duration of these two consecutive phenomena leads to force‐generated luminescence or TL. Although TL has been known for a very long time, examples of TL‐active materials are scarce, but are increasing as synthetic and characterization procedures develop. The question is now whether the relatively rare phenomenon of TL needs to be reevaluated to obtain a broader understanding of the subject.  相似文献   

18.
The importance of organic onium compounds for host/guest interactions in biological processes has been long recognized. In contrast, the versatility of synthetic onium compounds as host molecules in abiotic chemistry has only been investigated in detail for the last few years. Due to their inclusion ability and selectivities, organic ammonium, pyridinium, and phosphonium salts and other organic salts with specific structural features are interesting as clathrate-forming molecules. The crystal structures of the clathrates afford insight into the conformational adaptability of onium clathrands with limited flexibility to the geometric requirements of the guest molecules. Optically active onium hosts can be used for enantiomeric enrichment. In crystalline tetracyanoquinodimethane(TCNQ) complexes and radical anion salts, the structure of the organic heterocation has a marked effect on the electrical conductivity. Macrocyclic onium compounds of the phane type with “exohydrophilic” and “endolipophilic” cavities are suitable as models of enzymes and biological receptors. They can also be used to transfer aromatic and aliphatic guest molecules selectively into aqueous solution. Catalytic activity (including H/D exchange) has already been obtained with synthetic compounds having large cavities. The further development of such host/guest systems may contribute to the understanding of biological systems and the improvement of technical processes (catalysis in molecular cavities).  相似文献   

19.
The torch and nebulizer of an existing argon ICP system were modified and the system was (re-) optimized for aqueous and organic liquids. The paper describes the design considerations and construction of(1) a new, streamlined torch including a torch base used in this study, where a demountable rather than a prealigned version of the torch was preferred;(2) a cross-flow pneumatic nebulizer with adjustable teflon capillaries including a spray chamber with flow spoiler, concentric aerosol pick-up tube, and “U” tube with unequal legs to smooth the flow of wasted liquid to the drain.The (re)-optimization of the ICP system for analysis of aqueous solutions with inorganic matter or with both inorganic and organic matter is discussed in the light of earlier work in this laboratory regarding the selection of “compromise conditions” and the choice of representative spectral lines and measurement criteria for establishing such compromise conditions. In this context the authors consider the concepts of norm temperature and “hard” and “soft” lines, as well as recent results of measurements of spatial distributions in ICPs. The authors further describe experiments aimed at the optimization of the operating conditions of an “organic ICP” using methyl isobutyl ketone (MIBK) as organic solvent. Trends of net line and background signals and signal-to-background ratios with the ICP parameters (power; outer, intermediate and carrier gas flow; observation height; liquid feed rate) are reported, and a rational choice of compromise conditions for the ICP is argued.Performance characteristics of the modified ICP system, such as detection limits, precision and interference level, achieved under compromise conditions, have been communicated in a previous report [Spectrochim. Acta36B, 1031 (1981)] to demonstrate the capabilities of the system for analysis of aqueous solutions. Detection limits in MIBK and oil diluted in MIBK are reported in the present work as an illustration of the performance of the system when used for organic liquid analysis.  相似文献   

20.
The whole array of organic and inorganic nanoparticles, from fullerenes and carbon nanotubes to metals and metal oxides, is discussed in terms of chirality and its stereochemical consequences on the basis of the unified “core-shell” concept.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号