首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The copolymerization of 3-methyl-1-butene (3M1B), 2-methyl-2-butene (2M2B), or 2-methyl-1-butene (2M1B) with trans-2-butene (2B) was attempted in the presence of a Ziegler-Natta catalyst. It was found the 3M1B underwent monomer-isomerization copolymerization with 2B to give a copolymer consisting of both 3M1B and 1-butene (1B) units, with an infrared (IR) spectrum in good agreement with that obtained from the copolymerization of 3M1B with 1B under similar conditions. When the apparent copolymerization parameters obtained by a TiCl3–(C2H5)3Al catalyst were compared, the apparent reactivity of 3M1B observed in the 3M1B-2B system was much higher than that in the 3M1B-1B system. However, 2M2B and 2M1B did not undergo monomer-isomerization copolymerization with 2B, and only the homopolymer of 1B was obtained under similar conditions.  相似文献   

2.
The polymerizations of 4-methyl-1-pentene(4M1P), 4-methyl-2-pentene (4M2P), 2-methyl-2-pentene (2M2P), and 2-methyl-1-pentene (2M1P) with Ziegler-Natta catalyst have been investigated. Both 4M1P and 4M2P were found to polymerize with TiCl3–(C2H5)Al catalyst to give high molecular weight poly(4M1P), while 2M2P and 2M1P did not give polymers with 4M1P units. However, when the polymerizations of 2M1P and 2M2P were carried out with ternary catalyst systems, TiCl3–(C2H5)AlCl–(PPh3)2PdCl2 and TiCl3–(C2H5)AlCl–Ni(SCN)2 polymers with 4M1P units were obtained in low yield. It was concluded that these four methylpentenes could polymerize with the monomer-isomerization polymerization mechanism to poly(4M1P). The results of the observed isomer distribution of methylpentenes recovered, and the rate of polymerization of four methylpentenes suggest that the isomerization from 2M1P to 4M1P with the above ternary catalyst systems might proceed via a direct one-step isomerization mechanism.  相似文献   

3.
2-Butene(2B) copolymerizes with 3-heptene(3H) and 4-methyl-2-pentene(4M2P) by a monomer-isomerization copolymerization mechanism in the presence of TiCl3–(C2H5)3Al catalyst at 80°C to yield the copolymers of 1-olefin units. By comparison, the copolymerization of 1-butene(1B) with 4-methyl-1-pentene(4M1P) was also carried out under similar conditions. The composition of the copolymers obtained from these copolymerizations was determined from the ratios of optical densities D723/D1380 and D1170/D1380 in their infrared (IR) spectra. The apparent monomer reactivity ratios for the monomer-isomerization copolymerization of 2B with 3H and 4M2P, in which the concentration of olefin monomer in the feed was used as 2-olefin, were determined as follows: cis-2B(M1)/3H(M2); r1 = 4.00, r2 = 0.20: trans-2B(M1)/3H; r1 = 3.50, r2 = 0.20; 4M2P(M1)-trans-2B(M2): r1 = 0.05, r2 = 9.0. These results indicate that the isomerization of 2-olefins to 1-olefins was important to monomer-isomerization copolymerization.  相似文献   

4.
4-Phenyl-2-butene (4Ph2B) undergoes monomer-isomerization copolymerization with 4-methyl-2-pentene (4M2P) and 2-and 3-heptene (2H and 3H) with TiCl3–(C2H5)3Al catalyst at 80°C to produce copolymer consisting exclusively of 1-olefin units. For comparison the copolymerization of 4-phenyl-1-butene (4Ph1B) with 4-methyl-1-pentene (4M1P) and 1-heptene (1H) was carried out under similar conditions. The composition of the copolymers obtained from these copolymerizations was determined from the ratios of optical densities D1380 and D1600 of infrared (IR) spectra of their thin films. The apparent monomer reactivity ratios for the monomer-isomerization copolymerization of 4Ph2B with 4M2P, 2H, and 3H in which the concentration of olefin monomer in the feed was used as internal olefin and those for the copolymerization of 4Ph1B with 4M1P and 1H were determined as follows: 4Ph2B(M1)-4M2P(M2); r1 = 0.90, r2 = 0.20, 4Ph1B(M1)-4M1P (M2); r1 = 0.40, r2 = 0.70, 4Ph2B(M1)-2H(M2); r1, = 0.45, r2 = 1.85, 4Ph2B(M1)-3H(M2); r1 = 0.50, r2 = 1.20, 4Ph1B(M1)-1H(M2); r1 = 0.55, r2 = 0.75. The difference in monomer reactivity ratios seemed to originate from the rate of isomerization from 2- or 3-olefins to 1-oletins in these monomer-isomerization copolymerizations.  相似文献   

5.
Monomer-isomerization copolymerizations of styrene (St) and cis-2-butene (c2B) with TiCl3-(C2H5)3Al catalyst were studied. St and c2B were found to undergo a new type of monomer-isomerization copolymerization, i.e., only isomerization of 2B to 1-butene ( 1B ) took place to give a copolymer consisting of St and 1B units. The apparent copolymerization parameters were determined to be rst = 16.0 and rc2b = 0.003. The parameters were changed by the addition of NiCl2 (rSt = 8.4, rc2b = 0.05). The copolymers containing the major amount of St units were produced easily through monomer-isomerization copolymerization of St and 2B. © 1995 John Wiley & Sons, Inc.  相似文献   

6.
5-Phenyl-2-pentene (5Ph2P) was found to undergo monomer-isomerization polymerization with TiCl3–R3Al (R = C2H5 or i-C4H9, Al/Ti > 2) catalysts to give a polymer consisting of exclusively 5-phenyl-1-pentene (5Ph1P) unit. The geometric and positional isomerizations of 5Ph2P to its terminal and other internal isomers were observed to occur during polymerization. The catalyst activity of alkylaluminum examined to TiCl3 was in the following order: (C2H5)3Al > (i-C4H9)3Al > (C2H5)2AlCl. The rate of monomer-isomerization polymerization of 5Ph2P with TiCl3–(C2H5)3Al catalyst was influenced by both the Al/Ti molar ratio and the addition of nickel acetylacetonate [Ni(acac)2], and the maximum rate was observed at Al/Ti = 2.0 and Ni/Ti = 0.4 in molar ratios.  相似文献   

7.
A study of the monomer isomerization polymerization of 2-, 3-, and 4-octenes has been made with TiCl3–(C2H5)3Al catalyst at 80°C in comparison with the ordinary polymerization of 1-octene. It was found that all these octenes underwent monomer-isomerization polymerization to give high-molecular-weight homopolymer consisting exclusively of the 1-octene unit. The addition of an isomerization catalyst such as nickel acetylacetonate accelerated this polymerization. The rates of polymerization were found to decrease in the following order: 1-octene > 2-octene > 3-octene > 4-octene. These results indicate that the isomerization proceeded by a stepwise double-bond migration. It was also found that the monomer-isomerization copolymerization of 2-octene and 2-butene occurred under similar conditions and produced copolymers of both 1-olefin units.  相似文献   

8.
2-Pentene and 2-hexene were found to undergo monomer-isomerization copolymerizations with 2-butene by Al(C2H5)3–VCl3 and Al(C2H5)3–TiCl3 catalysts in the presence of nickel dimethylglyoxime or transition metal acetylacetonates to yield copolymers consisting of the respective 1-olefin units. For comparison, the copolymerizations of 1-pentene with 1-butene and 1-hexene with 1-butene by Al(C2H5)3–VCl3 catalyst were also attempted. The compositions of the copolymers obtained from these copolymerizations were determined by using the calibration curves between the compositions of the respective homopolymer mixtures and the values of D766/D1380 in the infrared spectra. The monomer reactivity ratios for the monomer-isomerization copolymerizations of 2-butene (M1) with 2-pentene and 2-hexene, in which the concentrations of both 1-olefins calculated from the observed isomer distribution were used as those in the monomer feed mixture, and for the ordinary copolymerizations of 1-butene (M1) with 1-pentene and 1-hexene by Al(C2H5)3-VCl3 catalyst were determined as follows: 2-butene (M1)/2-pentene (M2): r1 = 0.14, r2 = 0.99; 1-butene (M1)/1-pentene (M2): r1 = 0.30, r2 = 0.74; 2-butene (M1)/2-hexene (M2): r1 = 0.11, r2 = 0.62; 1-butene (M1)/1-hexene (M2): r1 = 0.13, r2 = 0.90.  相似文献   

9.
Monomer-isomerization polymerization of propenycyclohexane (PCH) with TiCl3 and R3-xAICIx (R = C2H5 or i-C4H9, x = 1–3) catalysts was studied. It was found that PCH underwent monomer-isomerization polymerization to give a high molecular weight polymer consisting of an allylcyclohexane (ACH) repeat unit. Among the alkyaluminum cocatalysts examined, (C2H5)3Al was the most effective cocatalyst for the monomer-isomerization polymerization of PCH, and a maximum for the polymerization was observed at a molar ratio of Al/Ti of about 2.0. The addition of isomerization catalysts such as nickel acetylacetonate [Ni(acac)2] to the TiCl3–(C2H5)3Al catalyst accelerated the monomer-isomerization polymerization of PCH and gave a maximum for the polymerization at a Ni/Ti molar ratio of 0.5. PCH also undergoes monomer-isomerization copolymerization with 2-butene (2B).  相似文献   

10.
1,4-Cyclohexadiene underwent monomer-isomerization polymerization to yield poly(1,3-cyclohexadiene) with a Ziegler-Natta catalyst comprising TiCl4–Al(C2H5)3 catalyst with Al/Ti molar ratios of 0.5–3.0 at 60°C for 96 hr. Good yields of polymer were obtained (49.5% yield at Al/Ti = 3.0; [η] = 0.04 dl/g). The infrared and NMR spectra of the polymer were identical to those of poly-(1,3-cyclohexadiene), confirming that 1,4-cyclohexadiene first isomerizes to 1,3-cyclohexadiene and then homopolymerizes to give poly-1,3-cyclohexadiene. 1,3-Cyclohexadiene polymerized without isomerization easily in the presence of TiCl3–Al(C2H5)3 catalyst at Al/Ti molar ratios of 0.5–3.0 at 60°C for 3 hr (76.3% yield at Al/Ti = 3.0; [η] = 0.06 dl/g).  相似文献   

11.
In order to clarify the correlation between polymerization and monomer isomerization in the monomer-isomerization polymerization of β-olefins, the effects of some transition metal compounds which have been known to catalyze olefin isomerizations on the polymerizations of butene-2 and pentene-2 with Al(C2H5)3–TiCl3 or Al(C2H5)3–VCl3 catalyst have been investigated. It was found that some transition metal compounds such as acetylacetonates of Fe(III), Co(II), and Cr(III) or nickel dimethylglyoxime remarkably accelerate these polymerizations with Al(C2H5)3–TiCl3 catalyst at 80°C. All the polymers from butene-2 were high molecular weight polybutene-1. With Al(C2H5)3–VCl3 catalyst, which polymerizes α-olefins but does not catalyze polymerization of β-olefins, no monomer-isomerization polymerizations of butene-2 and pentene-2 were observed. When Fe(III) acetylacetonate was added to this catalyst system, however, polymerization occurred. These results strongly indicate that two independent active centers for the olefin isomerization and the polymerizations of α-olefins were necessary for the monomer-isomerization polymerizations of β-olefins.  相似文献   

12.
A study of the isomerization of butene-2 with TiCl3 or Al(C2H5)3–TiCl3 catalyst in n-heptane has been investigated at 60–80°C to elucidate further the mechanism of monomer-isomerization polymerization. It was found that positional and geometrical isomerizations in the presence of these catalysts occurred concurrently with activation energies of 14–16 kcal/mole. The presence of Al(C2H5)3 with TiCl3 catalyst could accelerate the initial rates of these isomerizations and initiate the monomer-isomerization polymerization of butene-2. From the results obtained, it was concluded that the isomerization of butene-2 proceeds via an intermediate σ-complex between the transition metal hydride and butene isomers.  相似文献   

13.
The isomerization and polymerization of propenylbenzene (PB) with various Ziegler–Natta catalyst systems have been investigated. With the TiCl3–(C2H5)3Al (Al/Ti > 2.0) catalyst at 80°C, PB polymerized to give a polymer exclusively consisting of allylbenzene (AB) unit. During the polymerization, AB, which polymerized readily with the catalyst, was produced through isomerization of PB, indicating that PB underwent monomer-isomerization polymerization. PB also polymerized with isomerization to AB in the presence of TiCl3?(C2H5)2AlCl?NiCl2 catalyst system, and a copolymer with PB and AB units was obtained. With TiCl3?C2H5AlCl2 catalyst, poly(PB) was formed via ordinary vinylene polymerization without isomerization. From these facts, it was concluded that the structure of the polymers produced from PB widely changed, depending on the catalyst systems used, which determine the rate of isomerization to AB and the polymerization reactivity of the PB and AB isomers formed.  相似文献   

14.
The cationic oligomerization of 2-ethyl-1,3-butadiene (2EBD) by a superacid (CF3SO3H) and a superacid derivative (CH3COClO4) accompanied monomer isomerization to 3-methyl-1,3-pentadiene (3MPD) before propagation to yield oligomers of the isomerized monomer as main products in benzene at 50°C. Detection of 3MPD in the reaction mixture and 1H-NMR structural analysis of the produced oligomers confirmed the occurrence of this “monomer-isomerization oligomerization.” On the other hand, in the presence of a metal halide catalyst (BF3OEt2) 2EBD reacted without isomerization and yielded oligomers that were different from those produced by the foregoing superacid catalysts. Monomer isomerization was suppressed in a polar solvent [(CH2Cl)2] or at lower temperatures. The mechanism of the oligomerization with monomer isomerization was discussed.  相似文献   

15.
The copolymerization of propylene with 1-butene and 1-pentene at 60°C in the propylene bulk in the presence of the homogeneous isospecific metallocene catalyst of the C2 symmetry rac-Me2Si(4-Ph-2-MeInd)2ZrCl2 activated by polymethylaluminoxane is studied. Copolymers containing up to 30 mol % 1-butene and up to 10 mol % 1-pentene are synthesized. For the copolymerization of the above monomers, reactivity ratios are estimated to be equal to unity, thereby indicating the azeotropic character of the process. It is found that the distribution of comonomer units in the copolymers is close to statistical. For both comonomers, the comonomer effect is observed: an increase in the rate of propylene polymerization after addition of a small amount of a less reactive comonomer. The addition of 1-butene and 1-pentene to polypropylene shows a weak effect on the stereoregularity of chains but causes a marked reduction in the molecular mass of the polymer and changes its thermophysical characteristics and mechanical properties. An X-ray diffraction study of the copolymers is performed.  相似文献   

16.
The copolymerization of BF_2-omplexed ethyl acrylate with propylene in the presence ofAIBN at 25℃was investigated. It was found that the rate of the copolymerization was propor-tional to the square root of the initiator concentration. The chain transfer agent CCl_4 greatly af-fects the inherent viscosity of the resulting copolymer. The smaller the dielectric constant of thesolvent, the greater the rate of copolymerization is. The equal concentration of the two monomersgive the maximum copolymerization rate. The ~1H-NMR and ~(13)C-NMR analysis indicated, when[EA.BF_2]/[EA.BF_2]+[P]>0.5, the resulting copolymer was the acrylate-rich random copoly-mer. Through the kinetic experiments we suggest that copolymerization follows the mechanismof the random copolymerization of the ternary complex with binary complex. When [EA.BF_3]/[EA.BF_2]+[P]<0.5, the resulting copolymer is always strictly alternating, and the alternatingcopolymerization follows the mechanism of the ternary complex homopolymerization. Usingthe homolog of the propylene, 1-pentene, we found that BF_3-complexed ethyl acrylate can forma ternary complex with 1-pentene identified by UV spectroscopy. This is a strong evidence forthe mechanism of ternary complex homopolymerizetion.  相似文献   

17.
The mechanism of stereoselectivity of propylene insertion in propylene-ethylene copolymerization on a CS symmetrical zirconium complex i-Pr(Cp) (Flu) ZrCl2 catalyst is discussed. Calculation results indicate that not only the β-carbon in the growing chain end of the polymer but also the substituent of the β-carbon play an important role in the selectivity of the prochiral face of the next-coming propylene monomer. The stereoregularity of propylene units connected to an ethylene unit (PPE) in propylene-ethylene copolymer was observed to be lower than that in propylene sequences (PPP) in the 13C NMR spectrum, which supports the calculation results. Furthermore, the structure and properties of propylene-olefin (ethylene, 1-butene, 1-pentene, 1-hexene, and 4-methyl-1-pentene) copolymers prepared with the i-Pr(Cp) (Flu) ZrCl2 catalyst system were studied. Propylene-1-butene copolymer exhibits peculiarly lower melting point depression because 1-butene units enter into the unit cell of the crystal structure of syndiotactic polypropylene.  相似文献   

18.
Effect of para-substituents in the ethylene (E) copolymerization with 1-decene (DC), 1-dodecene (DD), and with 2-methyl-1-pentene (2M1P) using a series of Cp*TiCl2(O-2,6-iPr2-4-R-C6H2) [R=H ( 1 ), tBu ( 2 ), Ph ( 3 ), CHPh2 ( 4 ), CPh3 ( 5 ), SiMe3 ( 6 ), SiEt3 ( 7 ), and newly prepared 4-tBuC6H4 ( 8 ) and 3,5-Me2C6H3 ( 9 )]-MAO catalyst systems has been studied. The activities in these copolymerization reactions were affected by the para-substituent, and the SiMe3 ( 6 ), SiEt3 ( 7 ) and 3,5-Me2C6H3 ( 9 ) analogues showed the higher activities at 50 °C in the E copolymerization reactions with DC (1.06–1.44×106 kg-polymer/mol-Ti⋅h), DD (1.04–1.88×106 kg-polymer/mol-Ti⋅h) than the others, whereas no significant differences were observed in the comonomer incorporations. Complexes 6 and 7 also showed the higher activities at 50 °C in the E/2M1P copolymerization, and the 2M1P incorporation was affected by the para-substituent and the polymerization temperature; complex 9 showed better 2M1P incorporation at 25 °C.  相似文献   

19.
New examples for the monomer-isomerization polymerizations of some branched internal olefins, 4-methyl-2-pentene and 4-phenyl-2-butene, are presented. When these olefins are polymerized with A1(C2 H5)3-TiCl3 ([TiCl3] = 120 mmole/liter, A1/Ti = 3.0) catalyst at 80°C, considerable amounts of high polymers [27.5%/60 hr ([η] = 0.68 d1/g) and 35.6%/100hr, respectively] were obtained. From the additional fact that the isomerization from these 2-olefins to the mixture of their positional isomers including 1-olefins was observed during the polymerization, it is assumed that the polymerizations from these 2-olefins are performed with the 1-olefins which isomerized from the starting 2-olefins.  相似文献   

20.
Studies devoted to the homo-and copolymerization of propylene with ethylene and higher olefins (1-butene, 1-hexene, 4-methyl-1-pentene, 1-octene) in liquid propylene under the action of homogeneous metallocene catalysts of various types are surveyed in brief. The main kinetic features of the processes and the properties of the polymers are discussed. The optimal conditions for the highly efficient syntheses of isotactic, syndiotactic, hemiisotactic, and stereoblock PPs are described. It is shown that the combined cocatalyst—polymethylaluminoxane coupled with (i-Bu)3Al—shows promise for the processes under consideration. Depending on the type of catalyst used, the copolymerization of propylene with ethylene yields copolymers with a block, random, or close to alternating distribution of comonomer units in a polymer chain. The copolymerization of propylene with higher olefins in the monomer bulk initiated by highly active sterically hindered isospecific catalytic systems shows an ideal character, and the reactivity ratios are r 1r 2 ≈ 1; that is, the composition of the copolymer is equal to the composition of the monomer mixture at all comonomer ratios. It is demonstrated that the synthesis of homo-and copolymers of propylene in the monomer bulk in the presence of modern homogeneous catalysts is promising for highly efficient production of both traditional and new polymer materials with a unique combination of mechanical and thermal properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号