首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Protonation and Cu(II) complexation equilibria of L -phenyhilaninamide, N2-methyl-L-phenylalaninamide, N2, N2-dimethyl-L-phenylalaninamide, L -valinamide, and L -prolinamide have been studied by potentiometry in aqueous solution. The formation constants of the species observed, CuL2+, CuL, CuLH, CuL2H and CuL2H?2, are discussed in relation to the structures of the ligands. Possible structures of bisamidato complexes are proposed on the ground of VIS and CD spectra. Since Cu(II) complexes of the present ligands (pH range 6–8) perform chiral resolution of dansyl- and unmodified amino acids in HPLC (reversed phase), it is relevant for the investigation of the resolution mechanism to know which are the species potentially involved in the recognition process.  相似文献   

2.
The complexation properties of the open-chain N2S2 ligands 1–4 are described and compared to those of analogous N2S2 macrocycles 5–7 . With Cu2+, the open-chain ligands give complexes with the stoichiometry CuL2+ and CuLOH+, the stabilities and absorption spectra of which have been determined. The ligand field exerted by these ligands is relatively constant and independent of the length of the chain. With Cu+, the species CuLH, CuLH2+, and CuL+ were identified and their stabilities measured. The redox potentials calculated from the equilibrium constants and measured by cyclic voltammetry agree and lie between 250 and 280 mV against SHE. The comparison between open-chain and cyclic ligands shows that (1) a macrocyclic effect is found for Cu2+ but not for Cu+, (2) the ligand-field strength is very different for the two types of ligands, and (3) the redox potentials span a larger interval for the macrocyclic than for the open-chain complexes.  相似文献   

3.
The complexation of Cue2+ with 1, 8-diamino-3, 6-diaza-2, 7-octanedione (? N, N′-diglycyl-1, 2-ethanediamine, DED) and with 1, 9-diamino-3, 7-diaza-2, 8nonanedione (? N, N′-diglycyl-1, 3-propanediamine, DPD) has been studied by potentiometric and by spectrophotometric titration. With both ligands L the complexation to Cue2+ leads to relatively complicated equilibria with CuLH3+, CuL2+, CuLH?2, and dimeric Cu2L complexes. With DED, another dimeric species, Cu2L2H, is formed in addition. Independent numerical treatment of spectrophotometric and poteritiometric titrations was used to obtain a satisfactory model for the complexation and to test the relative discriminatory power of the two methods. Titrations of glycine ethylamide (GEA) were used as an additional test and as a model for DED and DPD. It was shown that in each case spectrophotometric titrations give results of similar reproducibility and have a discriminatory power equal to or better than potentiometric titrations, provided that optimum mathematical algorithms are used in the numerical treatment.  相似文献   

4.
In aqueous acetonitrile (AN), Cu (I) forms the complexes Cu(AN)L+ and CuL with a series of substituted imidazoles (L). Stability constants logK of Cu(AN)+ + L ? Cu(AN)L+ and logβ2 were near 5 and 12, resp., log units for all ligands. The rate of autoxidation is described by ?d[O2]/dt=[CuL]2[O2](ka/(1+kb[CuL]) + (kc[L]+kd)/([CuL] + ke[Cu])), implying competition between one- or two-electron reduction of O2. The value of kc decreases from 5500M ?2S ?1 for unsubstituted imidazole to about 40M ?2S ?1 for 2-methylimidazole or 1,2-dimethyl-imidazole and essentially zero for the corresponding 2-ethyl-derivatives. On the other hand, ka and kb are much less influenced by the nature of the ligands, all values being near 5 · 104M ?2S ?1 and 103M ?1, respectively, for the complexes with the last four bases. Thus rather subtle sterical changes may strongly influence the relative importance of different pathways in the reduction of dioxygen by cuprous complexes.  相似文献   

5.
The ligands (L) bis (2-pyridyl) methane (BPM) and 6-methyl-bis (2-pyridyl)methane (MBPM) form the three complexes CuL2+, CuL, and Cu2L2H with Cu2+. Stability constants are log K1 = 6.23 ± 0.06, log K2 = 4.83 ± 0.01, and log K (Cu2L2H + 2H2+ ? 2 CuL2+) = ?10.99 ± 0.03 for BPM and 4.56 ± 0.02, 2.64 ± 0.02, and ?11.17 ± 0.03 for MBPM, respectively. In the presence of catalytic amounts of Cu2+, the ligands are oxygenated to the corresponding ketones at room temperature and neutral pH. With BPM and 2,4,6-trimethylpyridine (TMP) as the substrate and the buffer base, respectively, the kinetics of the oxygenation can be described by the rate law with k1 = (5.9 ± 0.2) · 10?13 mol l?1 s?1, k2 = (4.0 ± 0.6) · 10?4 mol?1 ls?1, k3 = (1.1 ± 0.1) · 10?12 mol l?1 s?1, and k4 = (9 ± 2) · 10?14 mol l?1 s?1.  相似文献   

6.
Copper(II) complexes of the ligands N2-[(R)-2-hydroxypropyl]- and N2-[(S)-2-hydroxypropyl]-(S)-phenylalaninamide performed chiral separation of N-dansyl-protected and unmodified amino acids in HPLC (reversed phase). With the aim of investigating which species are potentially involved in the discrimination mechanism, the two ligands were synthesized and their complexation equilibria with Cu2+ studied by potentiometry and spectrophotometry in aqueous solution up to pH 11.7. The formation constants of the species observed, [CuL]2+, [CuL2]2+, [CuLH–1]+, [CuL2H–1]+, [CuL2H–2], and [CuL2H–3]?, were quite similar for both compounds and were compared to those of (S)-phenylalaninamide. Most probably, in [CuL2H–3]? the ligands behave as terdentate, with the deprotonated OH group occupying an apical position.  相似文献   

7.
The molecular structures of monocyclic sulfur-nitrogen ring systems, such as S2N2, S3N, S4N and S5N, can be considered as examples of electron rich (4n + 2)π systems. The structures of S4N4, S4N, P4S4, As4S4 and the bicyclic structures S4N, S4N as well as S5N6 can be rationalized on the basis of a planar tetrasulfur tetranitride with 12π electrons.  相似文献   

8.
The Hartree-Fock instablities of S2N2 are reported and compared with those of S3N and S4N. These unsaturated sulfur nitrogen planar rings are π electron rich and although the symmetry adapted HF solutions are singlet stable at the experimental bond lengths they become unstable with only a very modest increase in bond length. The broken symmetry solutions for S2N3, S3N, and S4N are of planar C2v type with one of the nitrogens stripped of its π electrons, producing a π hole.  相似文献   

9.
The interaction of solvents and of unidentate ligands such as N, SCN?, OCN? and OH? with the Co2+-, Ni2+ and Cu2+-complexes of 1,4,8,11-tetramethyl-1,4,8,11-tetraazacyclotetradecane (TMC) have been studied by Spectrophotometric and calorimetric techniques. The spectra in different solvents (Table 2) show that the Ni2+- and probably also the Cu2+-complex with TMC exist as square planar or pentacoordinate species or as a mixture of both, depending on the donor properties of the solvent. The [Co(TMC)]2+-complex is pentacoordinate in all the solvents studied. Ternary complexes [M(TMC)X]n+ are also formed by the unidentate ligands X = N, OCN?, OH?, F? and NH3 and their stability constants have been determined. Interesting is the high selectivity of [Ni(TMC)]2+ towards the addition of a further donor (Table 3). Only small ligands such as those listed above form stable adducts, whereas the larger ones such as imidazole or pyridine do not. This is a consequence of the special structure of the complex and of the trans-I-(RSRS)- conformation of the ligand in these complexes. Since the four methyl groups are all on the side of the macrocycle to which the additional unidentate ligand binds, steric interaction between the four methyl groups and the larger ligands prevents the formation of the adducts. The calorimetric measurements show that the stability of the complexes [M(TMC)X]n+ is due to both an enthalpic and entropic contribution which differ in their magnitude (Table 4). This indicates that several antagonistic factors are important in determining the overall stability.  相似文献   

10.
A systematic investigation on the SN2 displacement reactions of nine carbene radical anions toward the substrate CH3Cl has been theoretically carried out using the popular density functional theory functional BHandHLYP level with different basis sets 6‐31+G (d, p)/relativistic effective core potential (RECP), 6‐311++G (d, p)/RECP, and aug‐cc‐pVTZ/RECP. The studied models are CX1X2?? + CH3Cl → X2X1CH3C? + Cl?, with CX1X2?? = CH2??, CHF??, CHCl??, CHBr??, CHI??, CF2??, CCl2??, CBr2??, and CI2??. The main results are proposed as follows: (a) Based on natural bond orbital (NBO), proton affinity (PA), and ionization energy (IE) analysis, reactant CH2?? should be a strongest base among the anion‐containing species (CX1X2??) and so more favorable nucleophile. (b) Regardless of frontside attacking pathway or backside one, the SN2 reaction starts at an identical precomplex whose formation with no barrier. (c) The back‐SN2 pathway is much more preferred than the front‐SN2 one in terms of the energy gaps [ΔE(front)?ΔE(back)], steric demand, NBO population analysis. Thus, the back‐SN2 reaction was discussed in detail. On the one hand, based on the energy barriers (ΔE and ΔE) analysis, we have strongly affirmed that the stabilization of back attacking transition states (b‐TSs) presents increase in the order: b‐TS‐CI2 < b‐TS‐CBr2 < b‐TS‐CCl2 < b‐TS‐CHI < b‐TS‐CHBr < b‐TS‐CHCl < b‐TS‐CF2 < b‐TS‐CHF < b‐TS‐CH2. On the other hand, depended on discussions of the correlations of ΔE with influence factors (PA, IE, bond order, and ΔE), we have explored how and to what extent they affect the reactions. Moreover, we have predicted that the less size of substitution (α‐atom) required for the gas‐phase reaction with α‐nucleophile is related to the α‐effect and estimated that the reaction with the stronger PA nucleophile, holding the lighter substituted atom, corresponds to the greater exothermicity given out from reactants to products. © 2012 Wiley Periodicals, Inc. J Comput Chem, 2012  相似文献   

11.
We have determined the dynamic dipole (α1), quadrupole (α2), octupole (α3), and dipole–dipole–quadrupole (B) polarizabilities and the second hyperpolarizability tensor (γ) for the helium atom in its lowest triplet state (23S). We have done so for both real and imaginary frequencies: in the former case, for a range of frequencies (ω) between zero and the first electronic-transition frequency, and in the latter case for a 32-point Gauss–Legendre grid running from zero to ?ω = 20 Eh. We have also determined the dispersion-energy coefficients C6, C8, and C10 for the systems H(12S)? He(23S), He(11S)? He(23S), and He(23S)? He(23S) and the C, C, C, C, and C coefficients for the interaction He(23S)? H2(X1∑). Our values of the higher-order multipolar polarizabilities and of γ for the 23S state of helium are, we believe, the first to be published. © 1993 John Wiley & Sons, Inc.  相似文献   

12.
Thin films of AgSbS2 are important for phase‐change memory applications. This solid is deposited by various techniques, such as metal organic chemical vapour deposition or laser ablation deposition, and the structure of AgSbS2(s), as either amorphous or crystalline, is already well characterized. The pulsed laser ablation deposition (PLD) of solid AgSbS2 is also used as a manufacturing process. However, the processes in plasma have not been well studied. We have studied the laser ablation of synthesized AgSbS2(s) using a nitrogen laser of 337 nm and the clusters formed in the laser plume were identified. The ablation leads to the formation of various single charged ternary AgpSbqSr clusters. Negatively charged AgSbS, AgSb2S, AgSb2S, AgSb2S and positively charged ternary AgSbS+, AgSb2S+, AgSb2S, AgSb2S clusters were identified. The formation of several singly charged Ag+, Ag, Ag, Sb, Sb, S ions and binary AgpSr clusters such as AgSb, Ag3S?, SbS (r = 1–5), Sb2S?, Sb2S, Sb3S (r = 1–4) and AgS, SbS+, SbS, Sb2S+, Sb2S, Sb3S (r = 1–4), AgSb was also observed. The stoichiometry of the clusters was determined via isotopic envelope analysis and computer modeling. The relation of the composition of the clusters to the crystal structure of AgSbS2 is discussed. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
Crystal structures and electrical properties of radical-cation salts of the chiral organic donor TMET (S,S,S,S,-bis-(dimethylethylenedithio)tetrathiafulvalene) are described. Two structural types, 2:1 with octahedral anions Pf, AsF, SbF, I (incommensurate), and 3:2 with tetrahedral anions BF?4, CIO?4, ReO?4 are observed. Resistivity measurements between 2 and 298 K indicate that the 3:2 types are organic metals, while the other compounds are semiconductors. (TMET)3(CIO4)2 is metallic down to about 120 K at ambient pressure and remains metallic down to 2 K at 8 kbar.  相似文献   

14.
Ternary chalcogenide As‐S‐Se glasses, important for optics, computers, material science and technological applications, are often made by pulsed laser deposition (PLD) technology but the plasma composition formed during the process is mostly unknown. Therefore, the formation of clusters in a plasma plume from different glasses was followed by laser desorption ionization (LDI) or laser ablation (LA) time‐of‐flight mass spectrometry (TOF MS) in positive and negative ion modes. The LA of glasses of different composition leads to the formation of a number of binary AspSq, AspSer and ternary AspSqSer singly charged clusters. Series of clusters with the ratio As:chalcogen = 3:3 (As3S, As3S2Se+, As3SSe), 3:4 (As3S, As3S3Se+, As3S2Se, As3SSe, As3Se), 3:1 (As3S+, As3Se+), and 3:2 (As3S, As3SSe+, As3Se), formed from both bulk and PLD‐deposited nano‐layer glass, were detected. The stoichiometry of the AspSqSer clusters was determined via isotopic envelope analysis and computer modeling. The structure of the clusters is discussed. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
The kinetics of the reaction (1) between 1,4,8,11-tetraazacyclotetradecane (Cy) and a series of Cu(II) complexes CuL (L) = glycolate, malonate, succinate, picolinate, glycinate, iminodiacetate, nitrilotriacetate, N-(2-hydroxyethyl)ethylenediaminetriacetate, ethyienediamine, 1,3-diaminopropane, diethylenetriamine and N,N-bis(3-aminopropylamine) were studied spectrophotometrically at 25° and I = 0.5 (KNO3). From the analysis of the log kobs/log [L] profiles obtained at different pH values the resolved bimolecular rate constants k (Table 3) were obtained by a nonlinear curve-fitting procedure. For nearly all systems studied, the rate constant k, describing the reaction between the 1:1 complex CuL and the monoprotonated form of the macrocycle CyH, was obtained. The nonlinear relationship between log k and log KCuL and its nature is discussed. It is shown that the inverse relationship between reactivity and stability described by others is only a special case of the more general Eqn. 3 described here.  相似文献   

16.
The gas‐phase nucleophilic substitution reactions at saturated oxygen X? + CH3OY (X, Y = Cl, Br, I) have been investigated at the level of CCSD(T)/6‐311+G(2df,p)//B3LYP/6‐311+G(2df,p). The calculated results indicate that X? preferably attacks oxygen atom of CH3OY via a SN2 pathway. The central barriers and overall barriers are respectively in good agreement with both the predictions of Marcus equation and its modification, respectively. Central barrier heights (ΔH and ΔH) correlate well with the charges (Q) of the leaving groups (Y), Wiberg bond orders (BO) and the elongation of the bonds (O? Y and O? X) in the transition structures. © 2007 Wiley Periodicals, Inc. Int J Quantum Chem, 2007  相似文献   

17.
Nitride Sulfide Chlorides of the Lanthanides. III. Synthesis and Crystal Structure of Pr5N3S2Cl2 By reacting praseodymium with sulfur, sodium azide and praseodymium trichloride in sealed, evacuated silica tubes (850°C, 7 d), the nitride sulfide chloride Pr5N3S2Cl2 is obtained in case of a 4:2:1:1 molar ratio of the reactants (Pr:S:NaN3:PrCl3). A slight excess of trichloride or the addition of NaCl as a flux supports the yield of brownish red, rod-shaped transparent crystals which prove to be stable against hydrolysis. The crystal structure (monoclinic, C2/m (no. 12), a = 1540.2(1), b = 400.92(3), c = 1656.3(1) pm, β = 101.24(1)°, Z = 4, R = 0.039, Rw = 0.028) was determined by means of X-ray single crystal data. Thus five crystallographically different cations (Pr3+) are present which with three distinct kinds of nitride anions (N3?) build up two types of translationally commensurate chains from interconnected [NPr4] tetrahedra. With an additional edge per “chain-link” in chain I, two single chains [NPr3/3ePr1/1t]3+ (?[NPr2]3+) of cis-edge connected [NPr4] tetrahedra (known from the Sm4N2S3-type structure) are condensed into the double chain [(N1){(Pr1)(2+2)/(2+2)e,e(Pr2)(2+1)/(2+1)e,v}(N2)(Pr3)1/1t]3+ (?[N2Pr3]3+). Chain II consists of two single chains [NPr2/2vPr2/1t] 6+ (?[NPr3]6+) of vertex-connected [NPr4] tetrahedra (known from the Sm3NS3-type structure), which are condensed to the double chain [(N3)(Pr4)2/2e(Pr5)2/2v]3+ (?[NPr2]3+) via an additional edge per “chain-link” too. Both types of chains are bundled along [010] like a closest packing of rods. Four crystallographically different but by X-ray diffraction indistinguishable anions S2? and Cl? hold both cationic double chains together and also adjust the charge balance in a molar ratio of 1 : 1.  相似文献   

18.
Kinetics of the complex formation of chromium(III) with alanine in aqueous medium has been studied at 45, 50, and 55°C, pH 3.3–4.4, and μ = 1 M (KNO3). Under pseudo first-order conditions the observed rate constant (kobs) was found to follow the rate equation: Values of the rate parameters (kan, k, KIP, and K) were calculated. Activation parameters for anation rate constants, ΔH(kan) = 25 ± 1 kJ mol?1, ΔH(k) = 91 ± 3 kJ mol?1, and ΔS(kan) = ?244 ± 3 JK?1 mol?1, ΔS(k) = ?30 ± 10 JK?1 mol?1 are indicative of an (Ia) mechanism for kan and (Id) mechanism for k routes (‥substrate Cr(H2O) is involved in the k route whereas Cr(H2O)5OH2+ is involved in k′ route). Thermodynamic parameters for ion-pair formation constants are found to be ΔH°(KIP) = 12 ± 1 kJ mol?1, ΔH°(K) = ?13 ± 3 kJ mol?1 and ΔS°(KIP) = 47 ± 2 JK?1 mol?1, and ΔS°(K) = 20 ± 9 JK?1 mol?1.  相似文献   

19.
A New Samarium Nitride Sulfide: Sm4N2S3 The oxidation of samarium with sulfur in the presence of SmCl3 and NaN3 as nitrogen source (molar ratio: 12:9:4:2, evacuated silica vessel, some NaCl as flux, 850°C, 7 d) yields Sm4N2S3 as lath-shaped, dark red single crystals. The by-products (NaCl and NaSm2Cl6) are rinsed with water from the crude product. The crystal structure of Sm4N2S3 (monoclinic, C2/m (no. 12), Z = 2, a = 1 318.04(12), b = 391.57(2), c = 1 031.76(9) pm, β = 130.874(6)°, R = 0.036, Rw = 0.031) contains two crystallographically different Sm3+, both in sixfold coordination of the anions. Besides distorted octahedra [(Sm1)N3S3] and [(Sm2)NS5], tetrahedra [(N3?)(Sm)] connected via two cis-oriented edges to form chains [N(Sm1)3/3(Sm2)1/1]3+ build up the Mayn structural feature. These are arranged in the fashion of a closest packing of rods and held together by two crystallographically different S2? anions which take care for charge neutrality and three-dimensional interconnection.  相似文献   

20.
Acyl- and Alkylidenephosphanes. XXXV. Bis[ N -(trimethylsilyl)iminobenzoyl]phosphanides of Lithium and Zinc – Syntheses as well as NMR Spectroscopic, Structural, and Quantumchemical Studies From the reaction of bis(tetrahydrofuran)lithium bis(trimethylsilyl)phosphanide with two equivalents of benzonitrile in 1,2-dimethoxyethane, the yellow dme complex ( 2 a ) of lithium bis[N-(trimethylsilyl)iminobenzoyl]phosphanide ( 2 ) was obtained in 69% yield. However, the intermediate {1-[N-lithium-N-(trimethylsilyl)amido]benzylidene}trimethylsilylphosphane ( 1 ), formed by an analogous 1 : 1 addition in diethyl ether, turned out to be unstable and as a consequence could be characterized by nmr spectroscopic methods only; attempts to isolate the compound failed, but small amounts of the neutral complex 2 b , with the ligands benzonitrile and tetrahydrofuran coordinated to lithium, precipitated. The reaction of compound 2 with zinc(II) chloride in diethyl ether gives the orange-red spiro-complex zinc bis{bis[N-(trimethylsilyl)iminobenzoyl]phosphanide} ( 3 ); this complex is also formed from bis[N-(trimethylsilyl)iminobenzoyl]phosphane ( 4 ), easily amenable by a lithium hydrogen exchange of 2 a with trifluoroacetic acid [18], and zinc bis[bis(trimethylsilyl)amide]. As derived from nmr spectroscopic studies and x-ray structure determinations, compounds 2 a {δ31P +63.3 ppm; P21/n; Z = 4; R1 = 0.067}, 2 b {δ31P +63.3 ppm; P21/c; Z = 4; R1 = 0.063}, 3 {δ31P +58.2 ppm; C2/c; Z = 4; R1 = 0.037} and 4 {δ31P +58.1 ppm [18]} exist as cyclic 3-imino-2λ3σ2-phosphapropenylamides and -propenylamine, respectively, in solution as well as in the solid state. Unlike hydrogen derivative 4 the bis[N-(trimethylsilyl)iminobenzoyl]phosphanide fragments N,N′-coordinating either a lithium or a zinc cation are characterized by almost completely equalized bond lengths; typical mean distances and angles are: PC 180.3 and 178.7; CN 130.5 and 131.8; N–Si 175.3 and 179.3; N–Li 202.3; N–Zn 203.5 pm; CPC 108.8° and 110.5°; PCN 130.9° and 132.9°; CN–Li 113.0°, CN–Zn 117.4°; N–Li–N 104.6°; N–Zn–N 108.8°. Alterations in the shape of the six membered chelate rings, caused by an exchange of the 3-imino-2λ3σ2-phosphapropenylamide or related 2λ3σ2-phospha-1,3-dionate units for the corresponding phosphorus free ligands, are discussed in detail. The results of quantumchemical DFT-B3LYP calculations coincide very well with the experimentally obtained findings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号