首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 696 毫秒
1.
Until recently, repetitive solid-phase synthesis procedures were used predominantly for the preparation of oligomers such as peptides, oligosaccharides, peptoids, oligocarbamates, peptide vinylogues, oligomers of pyrrolin-4-one, peptide phosphates, and peptide nucleic acids. However, the oligomers thus produced have a limited range of possible backbone structures due to the restricted number of building blocks and synthetic techniques available. Biologically active compounds of this type are generally not suitable as therapeutic agents but can serve as lead structures for optimization. “Combinatorial organic synthesis” has been developed with the aim of obtaining low molecular weight compounds by pathways other than those of oligomer synthesis. This concept was first described in 1971 by Ugi.[56f,g,59c] Combinatorial synthesis offers new strategies for preparing diverse molecules, which can then be screened to provide lead structures. Combinatorial chemistry is compatible with both solution-phase and solid-phase synthesis. Moreover, this approach is conducive to automation, as proven by recent successes in the synthesis of peptide libraries. These developments have led to a renaissance in solid-phase organic synthesis (SPOS), which has been in use since the 1970s. Fully automated combinatorial chemistry relies not only on the testing and optimization of known chemical reactions on solid supports, but also on the development of highly efficient techniques for simultaneous multiple syntheses. Almost all of the standard reactions in organic chemistry can be carried out using suitable supports, anchors, and protecting groups with all the advantages of solid-phase synthesis, which until now have been exploited only sporadically by synthetic organic chemists. Among the reported organic reactions developed on solid supports are Diels–Alder reactions, 1,3-dipolar cycloadditions, Wittig and Wittig–Horner reactions, Michael additions, oxidations, reductions, and Pd-catalyzed C? C bond formation. In this article we present a comprehensive review of the previously published solid-phase syntheses of nonpeptidic organic compounds.  相似文献   

2.
Since the discovery of the crown ethers by Pedersen twenty years ago, the chemistry of synthetic hosts for the selective complexation of organic and inorganic guests has seen an extraordinarily rapid development. This article discusses in particular the contributions provided by synthetic cyclophanes as hosts to the understanding of molecular complexation of neutral organic guest molecules in aqueous and organic solvents. In aqueous solution, cyclophanes form stoichiometric complexes with neutral aromatic guests which can approach enzyme-substrate complexes in their stability. Efficient molecular complexation is also observed in organic environments. Here, as a result of large solvation effects, the strength of complexation is strongly dependent on the nature of the organic solvent. Electron donor-acceptor interactions can contribute significantly to the stability of complexes formed between cyclophane hosts and aromatic guests. Force-field calculations together with computer graphics are powerful tools in the design of water-soluble, optically active hosts for chiral recognition of complexed racemic guests. Simple and selective functionalization of the cyclophane framework leads to stable, bioorganic catalysts. Like enzymes, these catalysts bind their substrates in a rapid equilibrium prior to the reaction steps. As a perspective, some fascinating research objectives in the field of molecular recognition and catalysis which can be targeted with designed cyclophane hosts are shown.  相似文献   

3.
Supramolecular chemistry is a new area of research that has rapidly developed from pure synthetic chemistry, and its novelty has led to interdisciplinary cooperation between organic and inorganic chemistry, biochemistry, physical and theoretical chemistry, and physics. Whereas molecular chemistry essentially deals with the covalent bonding of atoms, Supramolecular chemistry is predominantly involved in the study of the weaker intermolecular interactions resulting in the association and self-organization of several components to form larger aggregates (supramolecules). The first crown ether discovered by the subsequent Nobel prizewinner Pedersen was more the fortuitous reaction product of an impurity, but nowadays, some twenty-five years later, chemists are able to tailor host molecules to special requirements. Host compounds having a cyclophane skeleton make an important contribution, since their aromatic structural units ensure the necessary rigidity of the molecular structures and thereby improve the preorganization of the coordination sites for the cooperative binding of the guests. During the course of the rapid development of Supramolecular chemistry such a large number of synthetic hosts has been developed and their interaction with guests studied in such depth that we must restrict ourselves here to a discussion of a particular group of host compounds, namely cavity-supporting macrobicyclic and macrooligocyclic phanesu, which bear a similar relation to open-chain and monocyclic hosts as the metal-complexing cryptands to the podands and crown ethers. The molecular architecture of these three-dimensionally bridged macrooligocycles is a challenge for synthetic chemistry. (Not only the size and shape of the intramolecular cavity, but also the provision of the latter with suitable coordination centers have to be included in the synthesis strategy.) The capacity for the envelopment of guests from all sides and the expedient endo functionalization often also produce a particularly strong binding of host and guest, outstanding selectivities with regards to molecular recognition, and special properties of the Supramolecular complexes.  相似文献   

4.
Dissatisfaction with empirical methods, high expectations of the public, poorly harmonized international regulations, and rising costs have induced pharmaceutical research to search for new approaches. As a consequence, the medicinal chemist's professional activity is in a state of change. His synthetic strategy is being increasingly influenced by the reasoning of molecular biology. Novel classes of biologically active compounds demand the development of new synthetic methods beyond the scope of modern preparative organic chemistry: enzymes and microorganisms, cell cultures, and genetic engineering are harnessed to supply highly complex structures. Major efforts are devoted to the development of reliable structure-activity relationships to rationalize his work. Thus the field of medicinal chemistry stretches from physical and physical organic chemistry far into the realm of biosciences, and the interdisciplinary character of this research is rapidly increasing. The author endeavors to convey an impression of this complex subject with the aid of selected examples.  相似文献   

5.
Two host-guest systems have been constructed,by employing structurally similar terpyridine platinum (II) macrocycle and molecular tweezer as the synthetic receptors.The macrocycle/guest complex displays low-energy emission signal,reinforced non-covalent binding affinity,and enhanced photosensitization capability than those of the molecular tweezer/guest one.The discrepancy between macrocyclic and acyclic preorganization modes originates from the different numbers of Pt (II)...Pt (II) metal-metal bonds in host-guest complexation structures.  相似文献   

6.
High-throughput experimentation (HTE) is a growing, enabling technology that allows the execution of large, parallel sets of experiments. Often, automation is required to dose compounds on milligram to sub-milligram scale, to run many parallel reactions, and to analyse large datasets. Unique approaches to screen design, implementation, and analysis are required, distinct from traditional synthetic organic chemistry. The discipline also presents a profitable opportunity for individual scientists to learn about and explore fields adjacent to chemistry, including data science, robotics and equipment engineering, and computer programming. This perspective presents the author's viewpoints on the field of HTE, its implementation within a chemistry career, and the automated future of organic chemistry technology.  相似文献   

7.
Starburst dendrimers are three-dimensional, highly ordered oligomeric and polymeric compounds formed by reiterative reaction sequences starting from smaller molecules—“initiator cores” such as ammonia or pentaerythritol. Protecting group strategies are crucial in these syntheses, which proceed via discrete “Aufbau” stages referred to as generations. Critical molecular design parameters (CMDPs) such as size, shape, and surface chemistry may be controlled by the reactions and synthetic building blocks used. Starburst dendrimers can mimic certain properties of micelles and liposomes and even those of biomolecules and the still more complicated, but highly organized, building blocks of biological systems. Numerous applications of these compounds are conceivable, particularly in mimicking the functions of large biomolecules as drug carriers and immunogens. This new branch of “supramolecular chemistry” should spark new developments in both organic and macromolecular chemistry.  相似文献   

8.
Precise oligomeric materials constitute a growing area of research with implications for various applications as well as fundamental studies. Notably, this field of science which can be termed macro-organic chemistry, draws inspiration from both traditional polymer chemistry and organic synthesis, combining the molecular precision of organic chemistry with the materials properties of macromolecules. Discrete oligomers enable access to unprecedented materials properties, for example, in self-assembled structures, crystallization, or optical properties. The degree of control over oligomer structures resembles many biological systems and enables the design of materials with tailored properties and the development of fundamental structure–property relationships. This Review highlights recent developments in macro-organic chemistry from synthetic concepts to materials properties, with a focus on self-assembly and molecular recognition. Finally, an outlook for future research directions is provided.  相似文献   

9.
In recent years the so-called biomimetic chemistry has received much attention. Studies of the preparation and design of functional polymers which can serve as polymeric enzyme and nucleic acid models appear to be a particularly rapidly expanding areas of research. These polymers and their aggregates should require highly specific sites or, in other words, atmospheres around them, in order to facilitate a series of selective reactions under conditions similar to those of biochemical environments. In this connection, molecular design of certain three-dimensional, highly organized spaces which consist of various sorts of molecular aggregates and can incorporate definite molecules in a specified way within their space are of interest for performing controlled organic and polymer synthetic reactions.  相似文献   

10.
Supramolecular coordination compounds bear exceptional advantages over their organic counterparts. They are available in one-pot reactions and in high yields and display physical properties that are generally inaccessible with organic species. Moreover, their weak, reversible, noncovalent bonding interactions facilitate error checking and self-correction. This Review emphasizes the achievements in supramolecular coordination chemistry initiated by serendipity and their materialization based on rational design. The recognition of similarities in the synthesis of different supramolecular assemblies allows prediction of potential results in related cases. Supramolecular synthesis obeys guidelines comparable to the "lead sheet" used by small jazz ensembles for improvisation and therefore more often leads to unpredicted results. The combination of detailed symmetry considerations with the basic rules of coordination chemistry has only recently allowed for the design of rational strategies for the construction of a variety of nanosized systems with specified size and shape.  相似文献   

11.
Indoles are ubiquitous structures that are found in natural products and biologically active molecules. The synthesis of indoles and indole‐involved synthetic methodologies in organic chemistry have been receiving considerable attention. Indole‐N‐carboxylic acids and derived indole‐N‐carboxamides are intriguing compounds, which have been widely used in organic synthesis, especially in multicomponent reactions and C?H functionalization of indoles. This Minireview summarizes the advances of reactions involving indole‐N‐carboxylic acids and indole‐N‐carboxamides in organic chemistry, and discusses the synthetic potential and perspective of this field.  相似文献   

12.
Since its inception, ketene chemistry has developed into a unique and well-established source of useful transformations for conventional synthetic organic chemistry. It is, therefore, not surprising that soon after their movement from the realm of peptide and peptoid libraries to that of small molecules, combinatorial chemists have sought the benefits of ketene chemistry to satisfy their own synthetic needs. The ability of these versatile molecules to undergo reactions with nucleophiles, and to participate in cycloadditions and cyclocondensations, has been utilized for the preparation of diverse heterocyclic compounds, and has added to the advantages of polymer-assisted synthesis for rapid purification. Different types of ketenes and different methods for their generation have been involved, which illustrates the potential diversity of the chemistry. There is now a better grasp of the effect of the fragility of these sometimes transient molecules on the reactions involving solid supports, and this augurs well for the application of some of the more recent developments in ketene chemistry to the generation of small-molecule libraries.  相似文献   

13.
The importance of organic onium compounds for host/guest interactions in biological processes has been long recognized. In contrast, the versatility of synthetic onium compounds as host molecules in abiotic chemistry has only been investigated in detail for the last few years. Due to their inclusion ability and selectivities, organic ammonium, pyridinium, and phosphonium salts and other organic salts with specific structural features are interesting as clathrate-forming molecules. The crystal structures of the clathrates afford insight into the conformational adaptability of onium clathrands with limited flexibility to the geometric requirements of the guest molecules. Optically active onium hosts can be used for enantiomeric enrichment. In crystalline tetracyanoquinodimethane(TCNQ) complexes and radical anion salts, the structure of the organic heterocation has a marked effect on the electrical conductivity. Macrocyclic onium compounds of the phane type with “exohydrophilic” and “endolipophilic” cavities are suitable as models of enzymes and biological receptors. They can also be used to transfer aromatic and aliphatic guest molecules selectively into aqueous solution. Catalytic activity (including H/D exchange) has already been obtained with synthetic compounds having large cavities. The further development of such host/guest systems may contribute to the understanding of biological systems and the improvement of technical processes (catalysis in molecular cavities).  相似文献   

14.
A new perspective of electron transfer chemistry is described for fine control of electron transfer reactions including back electron transfer in the charge separated state of artificial photosynthetic compounds and its synthetic application. Fundamental electron transfer properties of suitable components of efficient electron transfer systems are described in light of the Marcus theory of electron transfer, in particular focusing on the Marcus inverted region, and they are applied to design multi-step electron transfer systems which can well mimic the function of a photosynthetic reaction center. Both intermolecular and intramolecular electron transfer processes are finely controlled by complexation of radical anions, produced in the electron transfer, with metal ions which act as Lewis acids. Quantitative measures to determine the Lewis acidity of a variety of metal ions are given in relation to the promoting effects of metal ions on the electron transfer reactions. The mechanistic viability of metal ion catalysis in electron transfer reactions is demonstrated by a variety of examples of chemical transformations involving metal ion-promoted electron transfer processes as the rate-determining steps, which are made possible by complexation of radical anions with metal ions.  相似文献   

15.
New mixed‐valence cobalt complexes with ligands derived from pyridoxal were synthesized and characterized, and their application as mimetics of the peroxidase enzyme was investigated. Single‐crystal X‐ray diffraction was used to analyze all complex structures in the solid state and their electrochemical behavior was investigated. A reactivity pattern was observed in the complex synthesis regarding the cobalt compounds from which analogous zwitterionic derivatives were obtained. The importance of these compounds lies in understanding their behavior in an oxidizing environment and evaluating whether they can activate hydrogen peroxide to oxidize phenolic compounds. In nature, enzymes called peroxidases, which efficiently oxidize phenolic compounds, trigger many reactions involving the activation of hydrogen peroxide to oxidize organic substrates. However, these enzymes present several disadvantages, including denaturation and elevated costs. Therefore, these limitations can be overcome by expanding research into the study of synthetic catalysts for the oxidation of phenolic compounds using hydrogen peroxide, which is a highly relevant field of bioinorganic chemistry.  相似文献   

16.
《中国化学快报》2019,30(11):1927-1930
Two host-guest systems have been constructed,by employing structurally similar terpyridine platinum(Ⅱ) macrocycle and molecular tweezer as the synthetic receptors.The macrocycle/guest complex displays low-energy emission signal,reinforced non-covalent binding affinity,and enhanced photosensitization capability than those of the molecular tweezer/guest one.The discrepancy between macrocyclic and acyclic preorganization modes originates from the different numbers of Pt(Ⅱ)…Pt(Ⅱ) metal-metal bonds in host-guest complexation structures.  相似文献   

17.
18.
Flash chemistry using flow microreactors enables highly chemoselective reactions of difunctional electrophiles with functionalized aryllithium compounds by virtue of extremely fast micromixing. The approach serves as a powerful method for protecting‐group‐free synthesis using organolithium compounds and opens a new possibility in the synthesis of polyfunctional organic molecules.  相似文献   

19.
This account summarizes our recent efforts in designing a good number of important organic transformations leading to the synthesis of biologically relevant compounds at room temperature and pressure. Currently, the concept of green chemistry is globally acclaimed and has already advanced quite significantly to emerge as a distinct branch of chemical sciences. Among the principles of green chemistry, one principle is dedicated to the “design of energy efficiency” – that is, to develop synthetic strategies that require less or the minimum amount of energy to carry out a specific reaction with optimum productivity – and the most effective way to save energy is to develop strategies/protocols that are capable enough to carry out the transformations at ambient temperature! As part of on‐going developments in green synthetic strategies, the design of reactions under ambient conditions coupled with other green aspects is, thus, an area of current interest. The concept of developing reaction strategies at room temperature and pressure is now an emerging field of research in organic chemistry and is progressing steadily. This account is aimed to offer an overview of our recent research works directly related to this particular field of interest, and highlights the green chemistry practice leading to carbon–carbon and carbon–heteroatom bond‐forming reactions of topical significance. Green synthetic routes to a variety of biologically relevant organic molecules (heterocyclic, heteroaromatic, alicyclic, acyclic, etc.) at room temperature and pressure are discussed.

  相似文献   


20.
Novel, biologically active substances from nature often provide excitement, stimulation, challenges, and opportunities for the scientific and medical communities. Experience and wisdom dictate investigation of their chemistry and pursuit of their chemical synthesis for more often than not, the rewards for both chemistry and medicine are great. The enediyne anticancer antibiotics are a rapidly emerging class of such compounds derived from bacterial sources. Combining unprecedented and highly unusual molecular architecture, phenomenal biological activities and fascinating modes of action, these DNA cleaving compounds burst onto the scene in the latter half of the 1980s when their structures became known, and they rapidly moved to center stage. Today the enediyne family includes the neocarzinostatin chromophore, the calicheamicins, the esperamicins, and the dynemicins, and soon the number of family members is certain to increase. These molecules elicited extensive research activities in chemical, biological, and biomedical circles and inspired the design of a number of novel molecular assemblies to probe and mimic their chemical and biological actions. A new body of synthetic technology and several novel synthetic strategies have already been devised to address the challenges posed by these molecules, and several new DNA cleaving agents have been designed and synthesized. This article summarizes the chemistry and biology of the enediynes and discusses mechanistic, synthetic, molecular design, and DNA cleavage aspects associated with the field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号