首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The reactivity of copolymer silane composed of maleic anhydride in the modification of fine colloidal silica was studied. The reaction of colloidal silica of 10 and 45-nm diameter with trimethoxysilyl-terminated poly(maleic anhydride-co-styrene) [P(MA-ST)] and poly(MA-co-methyl methacrylate) in tetrahydrofuran resulted in effective surface modification without particle aggregation. From the results that the reaction using the polystyrene silane of low molecular weight led to partial aggregation, it was suggested that the steric interaction between relatively rigid copolymer chains having a maleic anhydride moiety adsorbed on the silica prevented the aggregation in the reaction. The 29Si cross-polarization magic-angle-spinning NMR spectra of P(MA-ST)-modified silica showed that the polymer silane was bound to the silica surface by the direct reaction with silica hydroxyl groups and via the polymerization. Received: 27 June 2001 Accepted: 6 September 2001  相似文献   

2.
Stimuli‐responsive poly[(N‐isopropylacrylamide‐co‐maleic anhydride)‐g‐poly(ethylene oxide)]/poly(ethylene imine) macrobranched macrocomplexes were synthesized by (1) the radical copolymerization of N‐isopropylacrylamide and maleic anhydride with α,α′‐azobisisobutyronitrile as an initiator in 1,4‐dioxane at 65 °C under a nitrogen atmosphere, (2) the polyesterification (grafting) of prepared poly(N‐isopropylacrylamide‐co‐maleic anhydride) containing less than 20 mol % anhydride units with α‐hydroxy‐ω‐methoxy‐poly(ethylene oxide)s having different number‐average molecular weights (Mn = 4000, 10,000, or 20,000), and (3) the incorporation of macrobranched copolymers with poly(ethylene imine) (Mn = 60,000). The composition and structure of the synthesized copolymer systems were determined by Fourier transform infrared, 1H and 13C NMR spectroscopy, and chemical and elemental analyses. The important properties of the copolymer systems (e.g., the viscosity, thermal and pH sensitivities, and lower critical solution temperature behavior) changed with increases in the molecular weight, composition, and length of the macrobranched hydrophobic domains. These copolymers with reactive anhydride and carboxylic groups were used for the stabilization of penicillin G acylase (PGA). The conjugation of the enzyme with the copolymers significantly increased the thermal stability of PGA (three times at 45 °C and two times at 65 °C). © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 1580–1593, 2003  相似文献   

3.
Maleic and citraconic anhydrides were reacted with several diamines to obtain a novel class of high temperature resistant bisimides.1–3 The bisimides were characterized by melting points, elemental analysis, UV–Vis, 1H- and 13C-NMR, and mass spectral analysis. The bisimide monomers were then polymerized by the addition process. A poly(amidemaleimide) was also synthesized by reacting maleic anhydride with p-aminobenzhydrazide. The thermal stability of these highly crosslinked poly(bisimide)s were examined by TGA and DTA. A neat bisimide monomer obtained from 2,2′-bis[4(p-aminophenoxy)phenyl] propane with maleic anhydride namely, 2,2′-bis[4-(p-maleimidophenoxy)phenyl]propane was reacted with 2,2′-bis[4(p-aminophenoxy)phenyl]propane by the Michael reaction.4 A fiber glass cloth reinforced laminate was prepared from bismaleimide and amine mixture and the mechanical properties of the test laminate evaluated.  相似文献   

4.
Several water‐soluble polymers were used as templates for the in situ polymerization of pyrrole to determine their effect on the generation of nanosized polypyrrole (PPy) particles. The polymers used include: polyvinyl alcohol (PVA), polyethylene oxide (PEO), poly(vinyl butyral), polystyrene sulfonic acid, poly(ethylene‐alt‐maleic anhydride) (PEMA), poly(octadecene‐alt‐maleic anhydride), poly(N‐vinyl pyrrolidone), poly(vinyl butyral‐co‐vinyl alcohol‐co‐vinyl acetate), poly(N‐isopropyl acrylamide), poly(ethylene oxide‐block‐propylene oxide), hydroxypropyl methyl cellulose, and guar gum. The oxidative polymerization of pyrrole was carried out with FeCl3 as an oxidant. The morphology of PPy particles obtained after drying the resulting aqueous dispersions was examined by optical microscopy, and selected samples were further analyzed via atomic force microscopy. Among the template polymers, PVA was the most efficient in generating stable dispersions of PPy nanospheres in water, followed by PEO and PEMA. The average size of PPy nanospheres was in the range of 160 nm and found to depend on the molecular weight and concentration of PVA. Model reactions and kinetics of the polymerization reaction of pyrrole in PVA were carried out by hydrogen 1H NMR spectroscopy using ammonium persulfate as an oxidant. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

5.
A series of 13C‐enriched maleic anhydride grafted isotactic polypropylene samples were prepared in solution at 170 °C by changes in the initial maleic anhydride content. The NMR spectra of the samples showed that the signals of the maleic anhydride attached to the tertiary carbons of the isotactic polypropylene chains increased considerably with increasing maleic anhydride content, whereas the signals of the maleic anhydride on the radical chain ends (with a single bond) arising from β scission did not. On the other hand, the signals of the maleic anhydride on the radical chain ends with double bonds increased markedly with increasing maleic anhydride content, and this suggested that β scission could occur extensively after maleic anhydride was attached to the tertiary carbons. As a result, the molecular weight of the grafted polypropylene decreased significantly with increasing maleic anhydride content in this study. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 5529–5534, 2005  相似文献   

6.
Hydroxyl‐functionalized three‐arm poly(?‐caprolactone)s (PGCL‐OHs) were synthesized by the ring‐opening polymerization of ?‐caprolactone in the presence of glycerol (as the core) and stannous octoate. The effect of the feed ratio of ?‐caprolactone to glycerol on the ring‐opening polymerization was studied. These three‐arm PGCL‐OHs were then converted into double‐bond‐functionalized three‐arm poly(?‐caprolactone)s (PGCL‐Mas) by the reaction of PGCL‐OH with maleic anhydride in the melt at 130 °C. The quantitative conversion of hydroxyl functionality was achieved at a low molecular weight. The resulting PGCL‐OH and PGCL‐Ma were characterized with gel permeation chromatography, Fourier transform infrared, 1H NMR, 13C NMR, and differential scanning calorimetry. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 1127–1141, 2002  相似文献   

7.
Stilbene-maleic anhydride is a well-known donor-acceptor comonomer pair which undergoes free radical copolymerization to form an alternating copolymer. A series of methyl substituted stilbenes were synthesized and copolymerized with maleic anhydride. A conversion versus time study was undertaken to understand the methyl substituent effect on copolymerization rates. Methyl substituents on the phenyl ring of stilbene can change the reactivity of stilbene by changing the resonance stability of the propagating radical and steric hindrance in the propagation step and thereby change the copolymerization rate. Methyl substituted stilbene-maleic anhydride copolymers were determined by quantitative 13C 1D NMR to be alternating copolymers. Size exclusion chromatography (SEC) measurements showed that the weight-average molecular weights of these copolymers varied from 3000 to over 1,000,000 g/mol. Interchain aggregation was observed in poly((E)-4-methylstilbene-alt-maleic anhydride) by dynamic light scattering (DLS). The SEC trace for poly((E)-4-methylstilbene-alt-maleic anhydride) exhibited bimodal peaks. No glass transition temperature or crystalline melting temperature was observed between 0 °C and 250 °C by differential scanning calorimetry (DSC). Thermogravimetric analysis (TGA) showed that these polymers have 5% weight loss around 290 °C.  相似文献   

8.
Maleic anhydride was grafted to the linear hydrocarbon, n-eicosane, at 165°C in the presence of the free radical initiator, 2,5-dimethyl-2,5-di(t-butylperoxy)-3-hexyne. The anhydride has a low solubility in eicosane and a multiple addition procedure was adopted. Grafted product which separated from the reaction mixture was fractionated and analyzed. The fractions contained on average 2–5.5 anhydride units/eicosane residue. 1H- and 13C-NMR studies show that the grafts consist of single succinic anhydride rings. At the concentrations of maleic anhydride chosen for homogeneous reaction ( < 0.02 M) and at 165°C, poly(maleic anhydride) is above its ceiling temperature, so that succinic anhydride radicals cannot add maleic anhydride to form polymer side chains. Instead, these radicals abstract hydrogen atoms to yield grafts consisting of single anhydride units.  相似文献   

9.
The maleation of conventional and metallocene linear low density polyethylenes by reactive extrusion has been explored with a view to defining the conditions necessary for a robust process that provides both high grafting efficiencies (>80%) and minimal degradation or cross-linking. The dependence of grafting efficiency on various operating parameters (maleic anhydride level, maleic anhydride:initiator ratio, throughput rate, direction of screw rotation, temperature) has been established. Literature methods for characterization of the grafted product based on FTIR or 1H NMR analysis have been critically examined with respect to their ability to distinguish between single unit and oligomeric maleic anhydride grafts and found to yield ambiguous results.  相似文献   

10.
The bulk polymerization of maleic anhydride initiated with acylperoxides, di-tert-butyl peroxide, AIBN, or pyridine proceeds with evolution of CO2. The amount of CO2 generated depends on the nature and the concentration of the initiator. With peroxide initiators, less than 5% of the polymerized maleic anhydride is decarboxylated. 1H-NMR spectra, obtained on the benzoyl peroxide-initiated polymer and its methyl ester, are consistent with the unrearranged poly(maleic anhydride) structure and rule out the polycyclopentanone structure proposed by Braun and co-workers. Base-initiated polymaleic anhydride is substantially decarboxylated, and the resulting polymer has anhydride and carboxyl groups. Elemental analyses and 1H-NMR spectra obtained on the pyridine-initiated polymer and its methyl ester refute both the cis-poly(vinylene ketoanhydride) structure suggested by Schopov and the polycylopentanone structure proposed by Braun and co-workers.  相似文献   

11.
Dehydrocoupling reactions between linear poly(methylhydrosiloxane) {Me3SiO–[MeSi(H)O]n–SiMe3} and alcohols such as cholesterol, anthracene‐9‐carbinol, (12‐crown‐4)‐2‐carbinol, pyrene‐1‐carbinol, 4‐methyl‐5‐thiazoleethanol, and 4‐pyridilpropanol were introduced under catalytically mild conditions. The degrees of conversion of Si? H bonds in polysiloxane were monitored with 1H NMR spectra. The reaction of the 9‐methoxyanthracene adduct on siloxane polymers and maleimide derivatives (maleimide, N‐ethylmaleimide, and maleic acid anhydride) produced [2+4]‐cycloadducts in very high yields. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 4013–4019, 2002  相似文献   

12.
Various copolyesteramides were prepared by melt compounding at 220 °C involving reaction of poly(styrene‐co‐maleic anhydride), SMA, with 6, 17, and 28 wt % maleic anhydride content, and 1‐dodecanol, C12OH, in the presence of 2‐undecyl‐1,3‐oxazoline, C11OXA. Copolymer architectures were examined by means of 1H NMR, FTIR, DSC, and TGA using model compounds prepared via solution reactions. While conversion of anhydride with alcohol was poor due to the thermodynamically favored anhydride ring formation, very high conversions were achieved when stoichiometric amounts of C11OXA were added. According to spectroscopic studies esteramide groups resulted from reaction of oxazoline with carboxylic acid intermediate. In the absence of alcohol, C11OXA reacted with anhydride to produce esterimides. Effective attachment of flexible n‐alkyl side chains via simultaneous reaction of C12OH and C11OXA resulted in lower glass‐transition temperatures of copolyesteramides. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 1222–1231, 2000  相似文献   

13.
Several nucleic acid analogues as shown in Scheme 1 were synthesized by alternating copolymerization of nucleoside analogues with maleic anhydride or acrylic anhydride. These polymers showed similar physicochemical properties to those of the natural polymers, such as base-pairing and base-stacking. Polymer 3U, for example, formed 1:1 complex with poly(adenylic acid) by base-pairing. Polymer 4A showed 33% of hypochromicity compared with the UV-absorption of adenosine due to the base-stacking. Polymer 5 catalyzed the cleavage of DNA and the hydrolysis of phosphodiester with a rate acceleration of 103 compared with the uncatalyzed reaction.  相似文献   

14.
A poly(inosinic acid) analogue, poly{[1′-(β-hypoxanthine-9-yl)-5′-deoxy-D -erythro-pent-4′-enofuranose]-alt-[maleic acid]} (4), was synthesized by the alternating copolymerization of nucleoside derivative 1 with maleic anhydride and subsequent hydrolysis. N-Glycosidic bonds of the polymer were spontaneously hydrolyzed to liberate hypoxanthine from the polymer backbone in a buffer solution (pH 7.4) at room temperature. The depurination rate constant of the polymer at pH 7.4 and 37°C was measured to be 1.9 × 10−6 sec−1, which was 105-fold higher than that (3 × 10−11 sec−1) of the depurination of DNA that occurred in the biological systems. The increase in the depurination rate was attributable to the high potential energy of the polymer caused by the crowded environment around the bases, so that the polymer was more susceptible to the hydrolysis. Since natural nucleic acids often have compact structures with the crowded environment around the bases by the intricate chain folding, the depurination may also be accelerated in a similar manner in the biological system. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 3361–3365, 1999  相似文献   

15.
A new poly(ethylene glycol) derivative, 1‐methoxypoly(oxyethylene)benzocyclobutene ( 1 ) was prepared from the reaction of 1‐benzocyclobutenyl 1‐hydroxyethyl ether with mesylate of methoxypoly(oxyethylene) in tetrahydrofuran. The degree of end‐group conversion, as determined by NMR, was 100%. The Diels–Alder reactions of 1 with maleic anhydride and N‐phenylmaleimide were carried out in refluxing toluene to obtain the corresponding adducts ( 2 and 3 , respectively) in excellent yields. NMR analyses of 2 and 3 indicated complete conversion of 1 to the corresponding products. The reaction of 2 with o‐toluidine resulted in complete conversion of the anhydride adduct to the corresponding products. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 1934–1938, 2004  相似文献   

16.
The synthesis of poly(styrene‐maleic anhydride) copolymers by frontal polymerization is reported. The propagating front can be achieved if the mole fraction of styrene (St) is 0.3 ≤ St ≤ 0.7 in the feed. Depending on the St/MA mole ratio alternating St‐MA‐St‐MA copolymers (St/MA ≤ 1) or (St‐MA)n‐(St‐St‐St)m block copolymers (St/MA > 1) are formed. The microstructure of the copolymers obtained was estimated by means of 13C NMR spectroscopy.  相似文献   

17.
A single-crystal X-ray diffraction study of tetracarbonyl-ferra-3-cyclopentene-2,5-dione has been made. Formally the compound can be derived from maleic anhydride by substitution of the bridging oxygen by Fe(CO)4. Accordingly the bonding character is similar to that of maleic anhydride. The ironcarbon distances in the ring indicate partial double bonds. The octahedrally coordinated iron atom is linked to four terminal carbon monoxide ligands, with a longer bond distance to the equatorial than to the axial ones (FeCax 1.809 Å, FeCeq 1.854 Å). The axial CO groups are strongly inclined towards the ring (CaxFeCax 164°). The latter effect is explained by electronic repulsion of the CO groups.IR, 1H NMR, and 13C NMR data are reported. Crystal data: space groupPnama:α  12.708(10),b  10.058(7),c  7.527(5) Å;Z  4. With 625 reflections [Fo > 3o(Fo)] the structure has been refined anisotropically (hydrogen isotropically) to R0.022.  相似文献   

18.
A new synthetic methodology for the preparation of copolymers having high incorporation of 1‐alkene together with multifunctionalities has been developed by polarity‐activated reversible addition‐fragmentation chain transfer (RAFT) copolymerization. This approach provides well‐defined alternating poly(1‐decene‐alt‐maleic anhydride), expanding the monomer types for living copolymerizations. Although neither 1‐decene (DE) nor maleic anhydride (MAn) has significant reactivity in RAFT homopolymerization, their copolymers have been synthesized by RAFT copolymerizations. The controlled characteristics of DE‐MAn copolymerizations were verified by increased copolymer molecular weights during the copolymerization process. Ternary copolymers of DE and MAn, with high conversion of DE, could be obtained by using additive amounts (5 mol %) of vinyl acetate or styrene (ST), demonstrating further enhanced monomer reactivities and complex chain structures. When ST was selected as the third monomer, copolymers with block structures were obtained, because of fast consumption of ST in the copolymerization. Moreover, a wide variety of well‐defined multifunctional copolymers were prepared by RAFT copolymerizations of various functional 1‐alkenes with MAn. For each copolymerization, gel permeation chromatography analysis showed that the resulting copolymer had well‐controlled Mn values and fairly low polydispersities (PDI = 1.3–1.4), and 1H and 13C NMR spectroscopies indicated strong alternating tendency during copolymerization with high incorporation of 1‐alkene units, up to 50 mol %. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 3488–3498, 2008  相似文献   

19.
A poly(uridylic acid) analogue, poly{[1′‐(β‐uracil‐1‐yl)‐5′‐deoxy‐D‐erythro‐pent‐4′‐enofuranose]‐alt‐[maleic acid]} (3), was synthesized by the alternating copolymerization of nucleoside derivative 1 and maleic anhydride and subsequent hydrolysis. N‐glycosidic bonds of the polymer were hydrolyzed spontaneously to liberate uracil from the polymer backbone in a buffer solution (pH 7.4) at room temperature. The depyrimidination rate constant of the polymer at pH 7.4 at 80 °C was 8.2 × 10−5 s−1, which was 104 times higher than that of the depyrimidination of DNA (1.2 × 10−9 s−1) under the same condition. The activation energy for the depyrimidination was 16 kcal/mol, which was about half of that for the relevant nucleoside reactions. The increase in the depyrimidination rate was attributable to the high potential energy of the polymer caused by the crowded environment around the bases, so that the polymer was more susceptible to the hydrolysis. Because natural nucleic acids often have compact structures with a crowded environment around the bases by an intricate chain folding, the pyrimidination also may have been accelerated in a similar manner in the biological system. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 423–429, 2000  相似文献   

20.
Polyesterification of adipic acid and maleic anhydride with 1,3-bis(2-hydroxyethoxy)benzene (HER) in the presence of toluene-4-sulphonic acid was carried out using melt condensation technique. The structural characterization of the synthesized polyesters had been carried out using Fourier transform infrared (FTIR) and proton nuclear magnetic resonance (1H NMR) spectroscopic methods. The thermal properties of the polyesters were studied using differential thermal analysis (DTA) and thermogravimetric analysis (TGA). The activation energies for the thermal degradation of the polyesters were calculated by the method of Dharwadkar and Kharkhanavala and discussed. The char residue value at 600 °C indicated maleic anhydride based polyester is thermally more stable compared to the adipic acid based polyester. The mechanism of degradation of these polyesters is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号