首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
A procedure for studying the first-passage failure of strongly non-linear oscillators with time-delayed feedback control under combined harmonic and wide-band noise excitations is proposed. First, the time-delayed feedback control forces are expressed approximately in terms of the system state variables without time delay. Then, the averaged Itô stochastic differential equations for the system are derived by using the stochastic averaging method. A backward Kolmogorov equation governing the conditional reliability function and a set of generalized Pontryagin equations governing the conditional moments of first-passage time are established. Finally, the conditional reliability function, the conditional probability density and moments of first-passage time are obtained by solving the backward Kolmogorov equation and generalized Pontryagin equations with suitable initial and boundary conditions. An example is worked out in detail to illustrate the proposed procedure. The effects of time delay in feedback control forces on the conditional reliability function, conditional probability density and moments of first-passage time are analyzed. The validity of the proposed method is confirmed by digital simulation.  相似文献   

2.
An optimal polynomial control strategy is developed in the context of the physical stochastic optimal control scheme of structures that is well-adapted to randomly-driven non-linear dynamical systems. A class of Duffing oscillators with polynomial active tendons subjected to random ground motions is investigated for illustrative purposes. Numerical studies reveal that using an exceedance probability criterion with the minimum of the failure probability of system quantities in energy trade-off sense, a linear control with the 1st-order controller suffices even for strongly non-linear systems. This bypasses the need to utilize non-linear controls with the higher-order controller which may be associated with dynamical instabilities due to time delay and computational dynamics. The statistical variability, meanwhile, of system responses gains an obvious reduction, and the system performance is significantly improved. The 1st-order controller, however, does not have the same control effect to the higher-order controller when control criteria currently in used are employed, e.g. system second-order statistics evaluation and Lyapunov asymptotic stability condition, as indicated in the comparative studies of the exceedance probability criterion against the two control criteria. Besides, the proposed optimal polynomial control is insensitive to the non-linearity strength of the class of base-excited non-linear oscillators whereby a robust control of systems can be implemented, while the LQG control in conjunction with the statistical linearization technique, using a band-limited white noise input, does not have this advantage.  相似文献   

3.
The stochastic Hopf bifurcation of multi-degree-of-freedom (MDOF) quasi-integrable Hamiltonian systems with multi-time-delayed feedback control subject to wide-band noise excitations is studied. First, the time-delayed feedback control forces are expressed approximately in terms of the system state variables without time delay and the system is converted into an ordinary quasi-integrable Hamiltonian system. The averaged It? stochastic differential equations are derived by using the stochastic averaging method for quasi-integrable Hamiltonian systems. Then the expression for average bifurcation parameter of the averaged system is obtained approximately and a criterion for determining the stochastic Hopf bifurcation induced by time-delayed feedback control forces in the original system using average bifurcation parameter is proposed. An example is worked out in detail to illustrate the criterion and its validity and to show the effect of time delay in feedback control on stochastic Hopf bifurcation of the system.  相似文献   

4.
A time-delayed stochastic optimal bounded control strategy for strongly non-linear systems under wide-band random excitations with actuator saturation is proposed based on the stochastic averaging method and the stochastic maximum principle. First, the partially averaged Itô equation for the system amplitude is derived by using the stochastic averaging method for strongly non-linear systems. The time-delayed feedback control force is approximated by a control force without time delay based on the periodically random behavior of the displacement and velocity of the system. The partially averaged Itô equation for the system energy is derived from that for the system amplitude by using Itô formula and the relation between system amplitude and system energy. Then, the adjoint equation and maximum condition of the partially averaged control problem are derived based on the stochastic maximum principle. The saturated optimal control force is determined from maximum condition and solving the forward–backward stochastic differential equations (FBSDEs). For infinite time-interval ergodic control, the adjoint variable is stationary process and the FBSDE is reduced to a ordinary differential equation. Finally, the stationary probability density of the Hamiltonian and other response statistics of optimally controlled system are obtained from solving the Fokker–Plank–Kolmogorov (FPK) equation associated with the fully averaged Itô equation of the controlled system. For comparison, the optimal control forces obtained from the time-delayed bang–bang control and the control without considering time delay are also presented. An example is worked out to illustrate the proposed procedure and its advantages.  相似文献   

5.
The response of quasi-integrable Hamiltonian systems with delayed feedback bang–bang control subject to Gaussian white noise excitation is studied by using the stochastic averaging method. First, a quasi-Hamiltonian system with delayed feedback bang–bang control subjected to Gaussian white noise excitation is formulated and transformed into the Itô stochastic differential equations for quasi-integrable Hamiltonian system with feedback bang–bang control without time delay. Then the averaged Itô stochastic differential equations for the later system are derived by using the stochastic averaging method for quasi-integrable Hamiltonian systems and the stationary solution of the averaged Fokker–Plank–Kolmogorov (FPK) equation associated with the averaged Itô equations is obtained for both nonresonant and resonant cases. Finally, two examples are worked out in detail to illustrate the application and effectiveness of the proposed method and the effect of time delayed feedback bang–bang control on the response of the systems.  相似文献   

6.
The approximate nonstationary probability density of a nonlinear single-degree-of-freedom (SDOF) oscillator with time delay subject to Gaussian white noises is studied. First, the time-delayed terms are approximated by those without time delay and the original system can be rewritten as a nonlinear stochastic system without time delay. Then, the stochastic averaging method based on generalized harmonic functions is used to obtain the averaged Itô equation for amplitude of the system response and the associated Fokker–Planck–Kolmogorov (FPK) equation governing the nonstationary probability density of amplitude is deduced. Finally, the approximate solution of the nonstationary probability density of amplitude is obtained by applying the Galerkin method. The approximate solution is expressed as a series expansion in terms of a set of properly selected basis functions with time-dependent coefficients. The proposed method is applied to predict the responses of a Van der Pol oscillator and a Duffing oscillator with time delay subject to Gaussian white noise. It is shown that the results obtained by the proposed procedure agree well with those obtained from Monte Carlo simulation of the original systems.  相似文献   

7.
针对由有界噪声、泊松白噪声和高斯白噪声共同构成的非高斯随机激励,通过Monte Carlo数值模拟方法研究了此激励作用下双线性滞迟系统和Bouc-Wen滞迟系统这两类经典滞迟系统的稳态响应与首次穿越失效时间。一方面,分析了有界噪声和泊松白噪声这两种分别具有连续样本函数和非连续样本函数的非高斯随机激励,在不同激励参数条件下对双线性滞迟系统和Bouc-Wen滞迟系统的稳态响应概率密度、首次穿越失效时间概率密度及其均值的不同影响;另一方面,揭示了在这类非高斯随机激励荷载作用下,双线性滞迟系统的首次穿越失效时间概率密度将出现与Bouc-Wen滞迟系统的单峰首次穿越失效时间概率密度截然不同的双峰形式。  相似文献   

8.
In this paper, the dynamic behavior of a stage-structured population model involving gestation delay is investigated within stochastically fluctuating environment and harvesting. Firstly, the stability and Hopf bifurcation condition are described on the delayed population model within deterministic environment. Secondly, the stochastic population model systems are discussed by incorporating white noise terms to the deterministic system model. Finally, numerical simulations show that the gestation delay with larger magnitude has ability to drive the system from stable to unstable within the same fluctuating environment and the frequency and amplitude of oscillation for the population density is enhanced as environmental driving forces increase. These indicate that the magnitude of gestation delay plays a crucial role to determine the stability or instability and the magnitude of environmental driving forces plays a crucial role to determine the magnitude of oscillation of the population model system within fluctuating environment.  相似文献   

9.
This paper considers the effect of time delays on the saturation control of first-mode vibration of a stainless-steel beam. Time delay is commonly caused by measurements of the system states, transport delay, on-line computation, filtering and processing of data, calculating and executing of control forces as required in control processing. The method of multiple scales is employed to obtain the analytical solutions of limit cycles and their stability and to investigate the bifurcations of the system under consideration. All the predictions from analytical solutions are in agreement with the numerical simulation. The analytical results show that a delay can change the range of the saturation control, either widening or shrinking the effective frequency bandwidth. Thus, vibration control of a beam can be achieved using an appropriate choice of the delay in a self-feedback signal. From the examples illustrated, this paper provides a positive example that time delay can also be utilized to suppress vibration in systems when time delay cannot be neglected.  相似文献   

10.
The first passage problem for linear and non-linear oscillators excited by white and coloured noise are considered. An iterative variance reduction scheme is used in a framework of a measure change in the space of sample functions according to the Girsanov transformation, which is based on introducing a Markov control process. It is proved that a good approximation to the optimal stochastic control process can be obtained from an equivalent white noise excited linear oscillator. It is shown that this leads to very accurate estimates of the failure probability of the original system. The advantage of this procedure is that expressions for the parameters of the equivalent linear system and the design point oscillations, which are needed to find the control process, are available analytically. The number of samples, the variance of the failure probability estimates and the computational time are reduced significantly compared with direct Monte Carlo simulations.  相似文献   

11.
Lijun Pei 《力学快报》2013,3(6):063012
Due to the appearance and the study of the ornithopter and flexible-wing micro air vehicles, etc., the time-varying systems become more and more important and ubiquitous in the study of the mechanics. In this letter, the sufficient conditions of the uniform asymptotic stability are first presented for the delayed time-varying linear differential equations with any time delay by employing the Dini derivative, Lozinskii measure and the generalized scalar Halanay delayed differential inequality. They are especially based on the estimation of the arbitrary solutions but not the fundamental solution matrix since their solutions' space is infinite-dimensional. Then some sufficient conditions of the stability, asymptotic stability and uniform asymptotic stability of the delayed time-varying linear system with a sufficiently small time delay are reported by employing Taylor expansion and Dini derivative. It implies that these stabilities can be guaranteed by the Lozinskii measure of the matrix composing of the time delay and the coefficient matrices of the system.  相似文献   

12.
Adaptive estimation procedures have gained significant attention by the research community to perform real-time identification of non-linear hysteretic structural systems under arbitrary dynamic excitations. Such techniques promise to provide real-time, robust tracking of system response as well as the ability to track time variation within the system being modeled. An overview of some of the authors’ previous work in this area is presented, along with a discussion of some of the emerging issues being tackled with regard to this class of problems. The trade-offs between parametric-based modeling and non-parametric modeling of non-linear hysteretic dynamic system behavior are discussed. Particular attention is given to (1) the effects of over- and under-parameterization on parameter convergence and system output tracking performance, (2) identifiability in multi-degree-of-freedom structural systems, (3) trade-offs in setting user-defined parameters for adaptive laws, and (4) the effects of noise on measurement integration. Both simulation and experimental results indicating the performance of the parametric and non-parametric methods are presented and their implications are discussed in the context of adaptive structures and structural health monitoring.  相似文献   

13.
《Comptes Rendus Mecanique》2017,345(11):764-778
The main objective of this work is to propose some regularization techniques for modeling contact actions in a clutch system and to solve the obtained nonlinear dynamic problem by a high-order algorithm. This device is modeled by a discrete mechanical system with eleven degrees of freedom. In several works, the discontinuous models of the contact actions are replaced by the smoothed functions using the hyperbolic tangent. We propose, in this work, to replace the discontinuous model by a regularized model with new continuous functions that permit us to search the solution under Taylor series expansion. This regularized model approaches better the discontinuous model than the model based on the smoothing functions, especially in the vicinity of the zone of singularities. To solve the equations of motion of discrete mechanical systems, we propose to use a high-order algorithm combining a time discretization, a change of variable based on the previous time, a homotopy transformation and Taylor series expansion in the continuation process. The results obtained by this modeling are compared with those computed by the Newton–Raphson algorithm.  相似文献   

14.
The aim of the present paper is to study the effects of non-linear devices on the reliability-based optimal design of structural systems subject to stochastic excitation. One-dimensional hysteretic devices are used for modelling the non-linear system behavior while non-stationary filtered white noise processes are utilized to represent the stochastic excitation. The reliability-based optimization problem is formulated as the minimization of the expected cost of the structure for a specified failure probability. Failure is assumed to occur when any one of the output states of interest exceeds in magnitude some specified threshold level within a given time duration. Failure probabilities are approximated locally in terms of the design variables during the optimization process in a parallel computing environment. The approximations are based on a local interpolation scheme and on an efficient simulation technique. Specifically, a subset simulation scheme is adopted and integrated into the proposed optimization process. The local approximations are then used to define a series of explicit approximate optimization problems. A sensitivity analysis is performed at the final design in order to evaluate its robustness with respect to design and system parameters. Numerical examples are presented in order to illustrate the effects of hysteretic devices on the design of two structural systems subject to earthquake excitation. The obtained results indicate that the non-linear devices have a significant effect on the reliability and global performance of the structural systems.  相似文献   

15.
Higher order linearization in non-linear random vibration   总被引:1,自引:0,他引:1  
In this paper a higher order linearization method for analyzing non-linear random vibration problems is presented. The non-linear terms of the given equation are replaced by unknown linear terms. These are in turn described by extra non-linear differential equations. The combined system of equations is then linearized to arrive at a higher degree-of-freedom equation for the original system. The method is illustrated by considering the Duffing oscillator under white noise input. The equivalent two d.o.f linear system is derived by the present method. Numerical results on steady state variance and PSD functions are obtained. These are found to be better than the simple linearization results.  相似文献   

16.
In this work, the authors study the influence of noise on the dynamics of base-excited elastic cantilever structures at the macroscale and microscale by using experimental, numerical, and analytical means. The macroscale system is a base excited cantilever structure whose tip experiences nonlinear interaction forces. These interaction forces are constructed to be similar in form to tip interaction forces in tapping mode atomic force microscopy (AFM). The macroscale system is used to study nonlinear phenomena and apply the associated findings to the chosen AFM application. In the macroscale experiments, the tip of the cantilever structure experiences long-range attractive and short-range repulsive forces. There is a small magnet attached to the tip, and this magnet is attracted by another one mounted to a high-resolution translatory stage. The magnet fixed to the stage is covered by a compliant material that is periodically impacted by the cantilever’s tip. Building on their earlier work, wherein the authors showed that period-doubling bifurcations associated with near-grazing impacts occur during off-resonance base excitations of macroscale and microscale cantilevers, in the present work, the authors focus on studying the influence of Gaussian white noise when it is included as an addition to a deterministic base excitation input. The repulsive forces are modeled as Derjaguin–Muller–Toporov (DMT) contact forces in both the macroscale and microscale systems, and the attractive forces are modeled as van der Waals attractive forces in the microscale system and magnetic attractive forces in the macroscale system. A reduced-order model, based on a single mode approximation is used to numerically study the response for a combined deterministic and random base excitation. It is experimentally and numerically found that the addition of white Gaussian noise to a harmonic base excitation facilitates contact between the tip and the sample, when there was previously no contact with only the harmonic input, and results in a response that is nominally close to a period-doubled orbit. The qualitative change observed with the addition of noise is associated with near-grazing impacts between the tip and the sample. The numerical and experimental results further motivate the formulation of a general analytical framework, in which the Fokker–Planck equation is derived for the cantilever-impactor system. After making a set of approximations, the moment evolution equations are derived from the Fokker–Planck equation and numerically solved. The resulting findings support the experimental results and demonstrate that noise can be added to the input to facilitate contact between the cantilever’s tip and the surface, when there was previously no contact with only a harmonic input. The effects of Gaussian white noise are numerically studied for a tapping mode AFM application, and it is shown that contact between the tip and the sample can be realized by adding noise of an appropriate level to a harmonic excitation.  相似文献   

17.
The dynamical behaviour of a parametrically excited Duffing-van der Pol oscillator under linear-plus-nonlinear state feedback control with a time delay is concerned. By means of the method of averaging together with truncation of Taylor expansions, two slow-flow equations on the amplitude and phase of response were derived for the case of principal parametric resonance. It is shown that the stability condition for the trivial solution is only associated with the linear terms in the original systems besides the amplitude and frequency of parametric excitation. And the trivial solution can be stabilized by appreciate choice of gains and time delay in feedback control. Different from the case of the trivial solution, the stability condition for nontrivial solutions is also associated with nonlinear terms besides linear terms in the original system. It is demonstrated that nontrivial steady state responses may lose their stability by saddle-node (SN) or Hopf bifurcation (HB) as parameters vary. The simulations, obtained by numerically integrating the original system, are in good agreement with the analytical results.  相似文献   

18.
The effect of non-linear magnetic forces on the non-linear response of the shaft is examined for the case of superharmonic resonance in this paper. It is shown that the steady-state superharmonic periodic solutions lose their stability by either saddle-node or Hopf bifurcations. The system exhibits many typical characteristics of the behavior of non-linear dynamical systems such as multiple coexisting solutions, jump phenomenon, and sensitive dependence on initial conditions. The effects of the feedback gains and imbalance eccentricity on the non-linear response of the system are studied. Finally, numerical simulations are performed to verify the analytical predictions.  相似文献   

19.
Energy harvesting of monostable Duffing oscillator with piezoelectric coupling under Gaussian white noise excitation is investigated. Based on the Fokker–Plank–Kolmogorov equation of piezoelectric coupling systems, the statistical moments of the response are derived from the Van Kampen expansion. The effects of the spectral density of the random excitation and the coefficient of cubic nonlinearity on the expected response moments are analyzed. Some numerical examples are presented to demonstrate the effects of excitation spectral density, coefficient of cubic nonlinearity and initial conditions on the output voltage.  相似文献   

20.
A method for the evaluation of the probability density function (p.d.f.) of the response process of non-linear systems under external stationary Poisson white noise excitation is presented. The method takes advantage of the great accuracy of the Monte Carlo simulation (MCS) in evaluating the first two moments of the response process by considering just few samples. The quasi-moment neglect closure is used to close the infinite hierarchy of the moment differential equations of the response process. Moreover, in order to determine the higher order statistical moments of the response, the second-order probabilistic information given by MCS in conjunction with the quasi-moment neglect closure leads to a set of linear differential equations. The quasi-moments up to a given order are used as partial probabilistic information on the response process in order to find the p.d.f. by means of the C-type Gram-Charlier series expansion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号