首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract— The synthesis, absorption and emission properties of threo and erythro N-acetyl-bis-(pyrenylalanine)-methylester are discussed. The intensity of excimer emission is very dependent on the tendency of the solvent to interact with the peptide function by hydrogen bonding. Hydrogen accepting solvents shift the equilibrium between the different conformations, adopted by these dipeptides, towards a random coil conformation, which is unfavourable for excimer formation. In strongly hydrogen donating solvents however, a very intense excimer emission is observed due to a reduction of the partial double bond character of the peptide bond by an hydrogen bridge with the solvent molecules.  相似文献   

2.
Urocanic acid, imidazole propenoic acid, is a metabolic product of histidine, which accumulates in skin and is excreted in sweat. It absorbs UV radiation at wavelengths shorter than 340 nm, and its principal photochemical reaction is a trans-cis isomerization about the propenyl double bond. This isomerization to the biologically active cis isomer is implicated in the photoinduced suppression of the immune system of skin. The kinetics of the trans --> cis photoisomerization of urocanic acid has been determined in a number of solvents, spanning a range of polarities. The initial rates of isomerization and the photostationary trans-cis compositions, in all solvents except water, correlate linearly with solvent polarity. This indicates that the isomerization proceeds through a polar intermediate that is stabilized by coulombic interactions with the molecular environment.  相似文献   

3.
The conformational study of N-acetyl-N'-methylamide of azaproline (Ac-azPro-NHMe, the azPro dipeptide) is carried out using ab initio HF and density functional methods with the self-consistent reaction field method to explore the effects of the replacement of the backbone CHalpha group by the nitrogen atom on the conformational preferences and prolyl cis-trans isomerization in the gas phase and in solution (chloroform and water). The incorporation of the Nalpha atom into the prolyl ring results in the different puckering, backbone population, and barriers to prolyl cis-trans isomerization from those of Ac-Pro-NHMe (the Pro dipeptide). In particular, the azPro dipeptide has a dominant backbone conformation D (beta2) with the cis peptide bond preceding the azPro residue in both the gas phase and solution. This may be ascribed to the favorable electrostatic interaction or intramolecular hydrogen bond between the prolyl nitrogen and the amide hydrogen following the azPro residue and to the absence of the unfavorable interactions between electron lone pairs of the acetyl carbonyl oxygen and the prolyl Nalpha. This calculated higher population of the cis peptide bond is consistent with the results from X-ray and NMR experiments. As the solvent polarity increases, the conformations B and B* with the trans peptide bond become more populated and the cis population decreases more, which is opposite to the results for the Pro dipeptide. The conformation B lies between conformations D and A (alpha) and conformation B* is a mirror image of the conformation B on the phi-psi map. The barriers to prolyl cis-trans isomerization for the azPro dipeptide increase with the increase of solvent polarity, and the cis-trans isomerization proceeds through only the clockwise rotation with omega' approximately +120 degrees about the prolyl peptide bond for the azPro dipeptide in the gas phase and in solution, as seen for the Pro dipeptide. The pertinent distance d(N...H-NNHMe) and the pyramidality of imide nitrogen can describe the role of this hydrogen bond in stabilizing the transition state structure and the lower rotational barriers for the azPro dipeptide than those for the Pro dipeptide in the gas phase and in solution.  相似文献   

4.
5.
The conformational study on N-acetyl-N'-methylamides of oxazolidine and thiazolidine residues (Ac-Oxa-NHMe and Ac-Thz-NHMe) is carried out using ab initio HF and density functional B3LYP methods with the self-consistent reaction field method to explore the effects of the replacement of the C(gamma)H(2) group in the prolyl ring by oxygen or sulfur atoms on the conformational preferences and prolyl cis-trans isomerization in the gas phase and in solution (chloroform and water). As the solvent polarity increases, the conformations C with the C7 intramolecular hydrogen bonds become depopulated, the PPII- or PPI-like conformations F become more populated, and the cis populations increase for both Oxa and Thz dipeptides, as found for the Pro dipeptide, although the populations of backbone conformations and puckerings are different in pseudoproline and proline dipeptides. As the increase of solvent polarity, the populations of the trans/up conformations decrease for Oxa and Thz dipeptides, but they increase for the Pro dipeptide. It is found that the cis-trans isomerization proceeds through the anticlockwise rotation with omega' approximately -60 degrees about the oxazolidyl peptide bond and the clockwise rotation with omega' approximately +120 degrees about the thiazolidyl peptide bond in the gas phase and in solution, whereas the clockwise rotation is preferred for the prolyl peptide bond. The pertinent distance d(N...H-N(NHMe)) and the pyramidality of the prolyl nitrogen can describe the role of this hydrogen bond in stabilizing the transition state structure but the lower rotational barriers for Oxa and Thz dipeptides than those for the Pro dipeptide, which is observed from experiments, cannot be rationalized. The calculated cis populations and rotational barriers to the cis-trans isomerization for both Oxa and Thz dipeptides in chloroform and/or water are consistent with the experimental values.  相似文献   

6.
Isomerization of pyrethroid insecticides was observed during extraction and gas chromatography (GC) analysis. An improvement in sensitivity was noted for pyrethroids in sediment extracts in comparison to pure solvent. Stability of pyrethroids using different solvents and analyte additives were investigated, and GC injection conditions were optimized. Polar solvents enhanced pyrethroid isomerization, while hexane was the best choice as an analytical solvent. Acetic acid was used successfully as an isomer-stabilizing agent for GC analysis of pyrethroids. Acidified (0.1% acetic acid) hexane prevented pyrethroid isomerization, increased peak intensity up to 1.9 times, and calibration curve linearity (relative standard deviation for response factors) 0.8-12.5 times compared to hexane alone.  相似文献   

7.
8.
A relationship between intramolecular hydrogen bonding and the cis-trans isomerization of a proline imide bond for proline-containing short peptides were studied by proton NMR and infrared spectroscopy using DMSO-d6/CDCl3 mixed solvents. The percentage of the trans form increases with increasing fraction of CDCl3 in the mixed solvents except for compounds without possibility of intramolecular hydrogen bonding. Chemical shift variations of amide protons with solvent mixing ratios were found to be useful for judging whether the amide protons take part in the intramolecular hydrogen bonding to a considerable degree or not. These results and infrared spectra were used to specify intramolecularly hydrogen bonded structures of the peptides. Formation of the 10-membered or 13-membered hydrogen bonded ring which includes the carbonyl group precedent to the prolyl residue facilitates the cis-to-trans isomerization and these hydrogen bonded rings are strong enough to restrict the proline imide bond to the trans form in CDCl3 solution. On the other hand, a 7-membered hydrogen bonded ring is not so effective in restricting the proline imide bond.  相似文献   

9.
The twisted form of bianthrone is known as a metastable state provided by a photo‐induced or thermal‐induced isomerization of the folded form, and thus prevents the isolation and the detailed analysis of its electronic structure. In this study, an unsymmetrical bianthrone ( 2 ), consisting of the electron‐withdrawing anthrone and electron‐donating acridane, have been synthesized and shown to exhibit a solvent‐polarity‐dependent isomerization reaction between the folded and twisted isomers. With increasing the polarity of the solvent, 2 showed an isomerization reaction from the folded form to the twisted form. The stabilization of the twisted isomer in polar solvents can be interpreted as proof of its relatively large zwitterionic character. The DMF solution of 2 displayed paramagnetically‐broadened NMR signals from the thermally populated triplet state resulting from rotation of the weakened ethylenic double bond of the twisted isomer.  相似文献   

10.
A pyrazoline derivative, 3‐(1,1‐dicyanoethenyl)‐1‐phenyl‐4,5‐dihydro‐1H‐pyrazole (DCNP), is studied by using optical spectroscopy methods in several solvents at room and at low temperatures. The DCNP molecule reveals a complex photophysics behavior, which is sensitive to solvent polarity, proticity, temperature and viscosity and arises from the presence of two rotational degrees of freedom of the dicyanovinyl group—the torsion around the double C=C bond and the s‐transs‐cis isomerization around the single C?C bond—that differently behave in various environmental conditions. The fluorescence yield of a few percent and sub‐nanosecond decay times observed at room temperature make the compound useful for optical studies of liquid environments. The proticity of polar solvents can be detected with two‐exponential fluorescence decays. At low temperatures, DCNP can be used as solvent viscosity or temperature fluorescent sensor.  相似文献   

11.
The conformational study on Ac-Ala-NHMe (the alanine dipeptide) and Ac-Pro-NHMe (the proline dipeptide) is carried out using ab initio HF and density functional methods with the self-consistent reaction field method to explore the differences in the backbone conformational preference and the cis-trans isomerization for the non-prolyl and prolyl residues in the gas phase and in the solutions (chloroform and water). For the alanine and proline dipeptides, with the increase of solvent polarity, the populations of the conformation tC with an intramolecular C(7) hydrogen bond significantly decrease, and those of the polyproline II-like conformation tF and the alpha-helical conformation tA increase, which is in good agreement with the results from circular dichroism and NMR experiments. For both the dipeptides, as the solvent polarity increases, the relative free energy of the cis conformer to the trans conformer decreases and the rotational barrier to the cis-trans isomerization increases. It is found that the cis-trans isomerization proceeds in common through only the clockwise rotation with omega' approximately +120 degrees about the non-prolyl and prolyl peptide bonds in both the gas phase and the solutions. The pertinent distance d(N...H-N(NHMe)) can successfully describe the increase in the rotational barriers for the non-prolyl and prolyl trans-cis isomerization as the solvent polarity increases and the higher barriers for the non-prolyl residue than for the prolyl residue, as seen in experimental and calculated results. By analysis of the contributions to rotational barriers, the cis-trans isomerization for the non-prolyl and prolyl peptide bonds is proven to be entirely enthalpy driven in the gas phase and in the solutions. The calculated cis populations and rotational barriers to the cis-trans isomerization for both the dipeptides in chloroform and/or water accord with the experimental values.  相似文献   

12.
Spectral differences between the cis and the trans isomer of a secondary amide peptide bond were used to follow the time course of the cis/trans isomerization of Gly-Gly, Gly-Ala, Ala-Gly, and Ala-Ala dipeptides in the UV/vis region at 220 nm. Isomerization rates and Eyring activation energies were calculated from pH- and LiCl-mediated solvent jump experiments. Rate constants were found to be in a narrow range of 0.29 to 0.64 s(-)(1) for the zwitterionic dipeptides at 25 degrees C. The isomerization rate is about 2-fold higher for the monoionic forms of Gly-Gly. The zwitterionic Gly-Gly has an activation enthalpy DeltaH() of 71.6 +/- 4.9 kJ mol(-)(1) that is in the range of the rotational barriers of aromatic side chain dipeptides that have been measured by (1)H NMR magnetization transfer experiments. Late stages of protein backbone rearrangements often involve crossing the energy barrier for rotational isomerization of imidic peptide bonds. Our findings are consistent with the idea that a wide range of secondary amide peptide bonds are also able to induce slow rate-limiting steps in protein restructuring.  相似文献   

13.
The conformational study on N-acetyl- N'-methylamide of l-lactic acid (Ac-Lac-NHMe, the Lac dipeptide) is carried out using ab initio HF and density functional methods with the self-consistent reaction field method to explore its backbone conformational preferences and cis-trans isomerization for the depsipeptide with an ester bond in the gas phase and in solution. In the gas phase and in chloroform, the conformation tB with a trans depsipeptide bond is most preferred for the Lac dipeptide, whose backbone torsion angles are phi approximately -150 degrees and psi approximately -5 degrees , juxtaposed to those of the 3 10-helical structure. The larger shift in phi is brought to reduce the repulsion between the two carbonyl carbons of the acetyl and NHMe groups. However, the polyproline II-like tF conformation becomes more populated and the relative stability of conformation tB decreases significantly as the solvent polarity increases. This may be ascribed to weakening a C(5) hydrogen bond between the depsipeptidyl oxygen and the carboxyl amide hydrogen that plays a role in stabilizing the conformation tB in the gas phase and in chloroform. The cis populations about the depsipeptide bond are nearly negligible in the gas phase and in solution. The rotational barriers to the cis-trans isomerization of the depsipeptide bond for the Lac dipeptide are calculated to be about 11 kcal/mol, which is about half of those for the Ala dipeptide, although they increase somewhat with the increase of solvent polarity. The cis-trans isomerization of the depsipeptide bond proceeds through either clockwise or anticlockwise rotations with torsion angles of about +90 degrees or -90 degrees , respectively, in the gas phase and in solution, whereas it has been known that the isomerization proceeds through only the clockwise rotation for alanyl and prolyl peptide bonds. The pertinent distances between the depsipeptidyl oxygen and the carboxyl amide hydrogen can describe the role of this hydrogen bond in stabilizing the transition state structures in the gas phase and in solution.  相似文献   

14.
Amide-amide hydrogen bonds have been implicated in directing protein folding and enhancing protein stability. Inversion transfer (13)C NMR spectroscopy and IR spectroscopy were used to compare the ability of various amide solvents and of water to alter the rate of the cis-trans isomerization of the prolyl peptide bond of Ac-Gly-[β,δ-(13)C]Pro-OMe and the amide I vibrational mode of [(13)C=O]Ac-Pro-OMe. The results indicate that secondary amides are significantly weaker hydrogen bond donors than is formamide or water. These results are most consistent with models for protein folding in which the formation of secondary structure is a cooperative process that follows hydrophobic collapse. These results also suggest that a hydrogen bond between a main-chain oxygen and an asparagine or glutamine sidechain may contribute more to protein stability than does a main-chain-main-chain hydrogen bond.  相似文献   

15.
A conformational study on the terminally blocked proline oligopeptides, Ac-(Pro)(n)()-NMe(2) (n = 2-5), is carried out using the ab initio Hartree-Fock level of theory with the self-consistent reaction field method in the gas phase and in solutions (chloroform, 1-propanol, and water) to explore the preference and transition between polyproline II (PPII) and polyproline I (PPI) conformations depending on the chain length, the puckering, and the solvent. The mean differences in the free energy per proline of the up-puckered conformations relative to the down-puckered conformations for both diproline and triproline increases for the PPII-like conformations and decreases for the PPI-like conformations as the solvent polarity increases. These calculated results indicate that the PPII-like structures have preferentially all-down puckerings in solutions, whereas the PPI-like structures have partially mixed puckerings. The free energy difference per proline residue between the PPII- and PPI-like structures decreases as the proline chain becomes longer in the gas phase but increases as the proline chain becomes longer in solutions and the solvent polarity increases. In particular, our calculated results indicate that each of the proline oligopeptides can exist as an ensemble of conformations with the trans and cis peptide bonds in solutions, although the PPII-like structure with all-trans peptide bonds is dominantly preferred, which is reasonably consistent with the previously observed results. In diproline Ac-(Pro)(2)-NMe(2), the rotational barrier to the cis-to-trans isomerization for the first prolyl peptide bond increases as the solvent polarity increases, whereas the rotational barrier for the second prolyl peptide bond does not show the monotonic increase as the solvent polarity increases. When the rotational barriers for these two prolyl peptide bonds were compared, it could be deduced that the conformational transition from PPI with the cis peptide bond to PPII with the trans peptide bond is initiated at the C-terminus and proceeds to the N-terminus in water. This is consistent with the results from NMR experiments on polyproline in D(2)O but opposite to the results from enzymatic hydrolysis kinetics experiments on polyproline.  相似文献   

16.
The conformational study on N-methoxycarbonyl-L-proline-N'-methylamide (Moc-Pro-NHMe, prolylcarbamate) is carried out using ab initio HF and density functional B3LYP methods with the self-consistent reaction field method in the gas phase and in solution (chloroform, acetonitrile, and water). The replacement of the N-acetyl group by the N-methoxycarbonyl group results in the changes in conformational preferences, populations for backbone and prolyl puckering, and barriers to cis-trans isomerization of the prolyl residue in the gas phase and in solution, although there are small changes in the geometry of the prolyl peptide bond and the torsion angles of backbone and prolyl ring. The cis population increases with the increase of solvent polarity, as found for Ac-Pro-NHMe (prolylamide), but it is amplified by 9% in the gas phase and about 17% in solution for prolylcarbamate compared with those for prolylamide. It is found that the cis-trans isomerization for prolylcarbamate proceeds through the clockwise rotation with omega' approximately +120 degrees about the prolyl peptide bond in the gas phase and in solution, as found for prolylamide. However, the rotational barriers to the cis-trans isomerization for prolylcarbamate are calculated to be 3.7-4.7 kcal/mol lower than those of prolylamide in the gas phase and in solution, and are found to be less sensitive to the solvent polarity. The calculated rotational barriers for prolylcarbamate in chloroform and water are in good agreement with the observed values. The shorter hydrogen-bond distance between the prolyl nitrogen and the amide H (H(NHMe)) of the NHMe group, the decrease in electron overlap of the prolyl C-N bond, and the favorable electrostatic interaction between the ester oxygen and the amide H(NHMe) for the transition state seem to play a role in lowering the rotational barrier of prolylcarbamate. The smaller molecular dipole moments of the ground- and transition-state structures for prolylcarbamate in the gas phase and in solution seem to be one of factors to make the rotational barrier less sensitive to the solvent polarity. As the solvent polarity increases (i.e., from the gas phase to chloroform to acetonitrile), the value of DeltaH(tc)(double dagger) decreases and the magnitude of DeltaS(tc)(double dagger) increases for prolylcarbamate, which results in a nearly constant value of the rotational barrier.  相似文献   

17.
The dynamic 1H NMR study of some primary carbamates in the solvents CDCl3 and CD3COCD3 between 183 and 298 K is reported. The free energies of activation, thus obtained (12.4 to 14.3 kcal mol-1), were attributed to the conformational isomerization about the N-C bond. These barriers to rotation show solvent dependence in contrast to the tertiary analogues and are lower in free energy by ca. 2-3 kcal mol-1.  相似文献   

18.
The facile isomerization of glucose into fructose has been developed using commercially available anion-exchange resins (AERs) in organic solvents. Following extensive screening for the amount and type of AERs, solvents and reaction time, glucose was transformed into fructose in yields of up to 50% using Amberlite A-26 with macroreticular morphology and tertiary amine functionality in a protic solvent (ethanol). AERs could be used five times without a significant loss of activity. This isomerization method could be applied to the direct conversion of glucose into furan compounds by integrating the dehydration of fructose with cation-exchange resins.  相似文献   

19.
Density functional based simulations, performed on polyglycine containing an enol peptide group [-C(OH)N-] which is a structural isomer of a keto form [-CONH-], show that in the enol-to-keto tautomeric reaction, the enol peptide group is less stable than the keto form, and that the enol-to-keto tautomerism is characterized by a cis/trans isomerization of the C-N peptide bond. The rate-limiting step in the cis/trans isomerization is a hydrogen migration from O to N atoms in the peptide group with a transition state consisting of a four-membered ring in the cis configuration. An analysis of the cis/trans isomerization pathway shows that the mechanisms for the cis/trans isomerization are essentially different between the enol and keto forms.  相似文献   

20.
The processes of Z,E isomerization about the C=N bond and retardation of rotation about the C-N bond in N-(5-pyrimidyl)- and N-(5-pyridyl)-acetamidines were investigated on the basis of data on the temperature dependence of the PMR spectra. The effect of the type of heteroring, the volume of the ortho substituents, and the character of the solvents on the magnitude of the free energy of activation of Z,E isomerism was analyzed thoroughly. The possible mechanisms for the isomerization process are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号