首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A family of novel titanasiloxanes containing the structural unit {[Ti(eta(5)-C(5)Me(5))O](3)} were synthesized by hydron-transfer processes involving reactions with equimolecular amounts of mu(3)-alkylidyne derivatives [{Ti(eta(5)-C(5)Me(5))(mu-O)}(3)(mu(3)-CR)] (R=H (1), Me (2)) and monosilanols, R(3)'Si(OH), silanediols, R(2)'Si(OH)(2), and the silanetriol tBuSi(OH)(3). Treatment of 1 and 2 with triorganosilanols (R'=Ph, iPr) in hexane affords the new metallasiloxane derivatives [{Ti(eta(5)-C(5)Me(5))(mu-O)}(3)(mu-CHR)(OSiR(3)')] (R=H, R'=Ph (3), iPr (4); R=Me, R'=Ph (5), iPr (6)). Analogous reactions with silanediols, (R'=Ph, iPr), give the cyclic titanasiloxanes [{Ti(eta(5)-C(5)Me(5))(mu-O)}(3)(mu-O(2)SiR'(2))(R)] (R=Me, R'=Ph (7), iPr (8); R=Et, R'=Ph (9), iPr (10)). Utilization of tBuSi(OH)(3) with 1 or 2 at room temperature produces the intermediate complexes [{Ti(eta(5)-C(5)Me(5)) (mu-O)}(3)(mu-O(2)Si(OH)tBu)(R)] (R=Me (11), Et(12)). Further heating of solutions of 11 or 12 affords the same compound with an adamantanoid structure, [{Ti(eta(5)-C(5)Me(5))(mu-O)}(3)(mu-O(3)SitBu)] (13) and methane or ethane elimination, respectively. The X-ray crystal structures of 3, 4, 6, 8, 10, 12, and 13 have been determined. To gain an insight into the mechanism of these reactions, DFT calculations have been performed on the incorporation of monosilanols to the model complex [{Ti(eta(5)-C(5)H(5))(mu-O)}(3)(mu(3)-CMe)] (2 H). The proposed mechanism consists of three steps: 1) hydron transfer from the silanol to one of the oxygen atoms of the Ti(3)O(3) ring, forming a titanasiloxane; 2) intramolecular hydron migration to the alkylidyne moiety; and 3) a mu-alkylidene ligand rotation to give the final product.  相似文献   

2.
Synthesis of the novel titanoxane compounds, [(TiCl)(TiOH){(Ti)[μ-(η(5)-C(5)Me(4)SiMe(2)O-κO)](2)(μ-O)}(2)(μ-O)] (4) and [{Ti[μ-(η(5)-C(5)Me(4)SiMe(2)O-κO)](μ-O)}(4)] (5) by controlled reaction of the dinuclear titanium oxo complex [{Ti{μ-(η(5)-C(5)Me(4)SiMe(2)O-κO)}Cl](2)(μ-O)] (1) with 2 equiv of LiOH is reported. Complex 4 is innovative and remarkable. It is one of the rare known examples of tetranuclear stable terminal hydroxo titanium complexes, with an open-chained structure, which coincides with the transient metal monohydroxo proposed in the stepwise pathway employed to justify the formation of the hexanuclear complex [{Ti[μ-(η(5)-C(5)Me(4)SiMe(2)O-κO)](μ-O)}(6)] (3) from 1. (1)H DOSY experiments were used to characterize complex 4. In addition, the structures of compound 5 and of precursor 1 were determined by single-crystal X-ray diffraction studies.  相似文献   

3.
Lithium aluminates Li[Al(O-2,6-Me(2)C(6)H(3))R'(3)] (R' = Et, Ph) react with the μ(3)-alkylidyne oxoderivative ligands [{Ti(η(5)-C(5)Me(5))(μ-O)}(3)(μ(3)-CR)] [R = H (1), Me (2)] to afford the aluminum-lithium-titanium cubane complexes [{R'(3)Al(μ-O-2,6-Me(2)C(6)H(3))Li}(μ(3)-O)(3){Ti(η(5)-C(5)Me(5))}(3)(μ(3)-CR)] [R = H, R' = Et (5), Ph (7); R = Me, R' = Et (6), Ph (8)]. Complex 7 evolves with the formation of a lithium dicubane species and a Li{Al(μ-O-2,6-Me(2)C(6)H(3))Ph(3)}(2)] unit.  相似文献   

4.
Ammonolysis of the μ(3)-alkylidyne derivatives [{Ti(η(5)-C(5)Me(5))(μ-O)}(3)(μ(3)-CR)] [R = H (1), Me (2)] produces a trinuclear oxonitride species, [{Ti(η(5)-C(5)Me(5))(μ-O)}(3)(μ(3)-N)] (3), via methane or ethane elimination, respectively. During the course of the reaction, the intermediates amido μ-alkylidene [{Ti(η(5)-C(5)Me(5))(μ-O)}(3)(μ-CHR)(NH(2))] [(R = H (4), Me (5)] and μ-imido ethyl species [{Ti(η(5)-C(5)Me(5))(μ-O)}(3)(μ-NH)Et] (6) were characterized and/or isolated. This achievement constitutes an example of characterization of the three steps of successive activation of N-H bonds in ammonia within the same transition-metal molecular system. The N-H σ-bond activation of ammonia by the μ(3)-alkylidyne titanium species has been theoretically investigated by DFT method on [{Ti(η(5)-C(5)H(5))(μ-O)}(3)(μ(3)-CH)] model complex. The calculations complement the characterization of the intermediates, showing the multiple bond character of the terminal amido and the bridging nature of imido ligand. They also indicate that the sequential ammonia N-H bonds activation process goes successively downhill in energy and occurs via direct hydron transfer to the alkylidyne group on organometallic oxides 1 and 2. The mechanism can be divided into three stages: (i) coordination of ammonia to a titanium center, in a trans disposition with respect to the alkylidyne group, and then the isomerization to adopt the cis arrangement, allowing the direct hydron migration to the μ(3)-alkylidyne group to yield the amido μ-alkylidene complexes 4 and 5, (ii) hydron migration from the amido moiety to the alkylidene group, and finally (iii) hydron migration from the μ-imido complex to the alkyl group to afford the oxo μ(3)-nitrido titanium complex 3 with alkane elimination.  相似文献   

5.
The half-lantern compound [{Pt(bzq)(μ-C(7)H(4)NS(2)-κN,S)}(2)]·Me(2)CO (1) was obtained by reaction of equimolar amounts of potassium 2-mercaptobenzothiazolate (KC(7)H(4)NS(2)) and [Pt(bzq)(NCMe)(2)]ClO(4). The Pt(II)···Pt(II) separation in the neutral complex [{Pt(bzq)(μ-C(7)H(4)NS(2)-κN,S)}(2)] is 2.910 (2) ?, this being among the shortest observed in half-lantern divalent platinum complexes. Within the complex, the benzo[h]quinoline (bzq) groups lie in close proximity with most C···C distances being between 3.3 and 3.7 ?, which is indicative of significant π-π interactions. The reaction of 1 with halogens X(2) (X(2) = Cl(2), Br(2), or I(2)) proceeds with a two-electron oxidation to give the corresponding dihalodiplatinum(III) complexes [{Pt(bzq)(μ-C(7)H(4)NS(2)-κN,S)X}(2)] (X = Cl 2, Br 3, I 4). Their X-ray structures confirm the retention of the half-lantern structure and the coordination mode of the bzq and the bridging ligand μ-C(7)H(4)NS(2)-κN,S. The Pt-Pt distances (Pt-Pt = 2.6420(3) ? 2, 2.6435(4) ? 3, 2.6690(3) ? 4) are shorter than that in 1 because of the Pt-Pt bond formation. Time dependent-density functional theory (TD-DFT) studies performed on 1 show a formal bond order of 0 between the metal atoms, with the 6p(z) contribution diminishing the antibonding character of the highest occupied molecular orbital (HOMO) and being responsible for an attractive intermetallic interaction. A shortening of the Pt-Pt distance from 2.959 ? in the ground state S(0) to 2.760 ? in the optimized first excited state (T(1)) is consistent with an increase in the Pt-Pt bond order to 0.5. In agreement with TD-DFT calculations, the intense, structureless, red emission of 1 in the solid state and in solution can be mainly attributed to triplet metal-metal-to-ligand charge transfer ((3)MMLCT) [dσ*(Pt-Pt) → π*(bzq)] excited states. The high quantum yields of this emission measured in toluene (44%) and solid state (62%) at room temperature indicate that 1 is a very efficient and stable (3)MMLCT emitter, even in solution. The high luminescence quantum yield of its red emission, added to its neutral character and the thermal stability of 1, make it a potential compound to be incorporated as phosphorescent dopant in multilayer organic light-emitting devices (OLEDs).  相似文献   

6.
Amide and lithium aryloxide gallates [Li(+){RGaPh(3)}(-)] (R = NMe(2), O-2,6-Me(2)C(6)H(3)) react with the μ(3)-alkylidyne oxoderivative ligand [{Ti(η(5)-C(5)Me(5))(μ-O)}(3)(μ(3)-CH)] (1) to afford the gallium-lithium-titanium cubane complexes [{Ph(3)Ga(μ-R)Li}{Ti(η(5)-C(5)Me(5))(μ-O)}(3)(μ(3)-CH)] [R = NMe(2) (3), O-2,6-Me(2)C(6)H(3) (4)]. The same complexes can be obtained by treatment of the [Ph(3)Ga(μ(3)-O)(3){Ti(η(5)-C(5)Me(5))}(3)(μ(3)-CH)] (2) adduct with the corresponding lithium amide or aryloxide, respectively. Complex 3 evolves with formation of 5 as a solvent-separated ion pair constituted by the lithium dicubane cationic species [Li{(μ(3)-O)(3)Ti(3)(η(5)-C(5)Me(5))(3)(μ(3)-CH)}(2)](+) together with the anionic [(GaPh(3))(2)(μ-NMe(2))](-) unit. On the other hand, the reaction of 1 with Li(p-MeC(6)H(4)) and GaPh(3) leads to the complex [Li{(μ(3)-O)(3)Ti(3)(η(5)-C(5)Me(5))(3)(μ(3)-CH)}(2)][GaLi(p-MeC(6)H(4))(2)Ph(3)] (6). X-ray diffraction studies were performed on 1, 2, 4, and 5, while trials to obtain crystals of 6 led to characterization of [Li{(μ(3)-O)(3)Ti(3)(η(5)-C(5)Me(5))(3)(μ(3)-CH)}(2)][PhLi(μ-C(6)H(5))(2)Ga(p-MeC(6)H(4))Ph] 6a.  相似文献   

7.
Inventing new wheels: reaction of [M(3)(CO)(12) ] (M=Ru, Os) with 4-RC(6)H(4)SH afforded [{M(S-4-RC(6)H(4))(2)(CO)(2)}(8)] (R=H; I) or [{M(S-4-RC(6)H(4))(2)(CO)(2)}(6)] (R=Me, iPr; II; see scheme), all of which have been structurally characterized. The octamers I are unique metal molecular wheels featuring skew-edge-shared octahedra with a central planar M(8) octagon. [{Ru(S-4-iPrC(6)H(4))(2)(CO)(2)}(6)] selectively binds a Cu(+) or Ag(+) ion to form [M'{Ru(S(4-iPr-C(6)H(4)))(2)(CO)(2)}(6)](+) (III).  相似文献   

8.
The neutral germanium(i) dimers, [{Ge(Piso)}(2)] and [{Ge(Giso)}(2)], Piso = [(ArN)(2)CBu(t)](-), Giso = [(ArN)(2)CNPr(i)(2)](-), Ar = C(6)H(3)Pr(i)(2)-2,6, which are stabilised by bulky amidinate and guanidinate ligands respectively, have been prepared by reduction of the corresponding germanium(ii) chlorides, [Ge(Piso)Cl] and [Ge(Giso)Cl]; theoretical studies suggest that the Ge-Ge bonds of [{Ge(Piso)}(2)] and [{Ge(Giso)}(2)] are associated with their HOMOs, whilst their LUMOs have substantial Ge-Ge pi-bonding character.  相似文献   

9.
A series of titanium-group 3/lanthanide metal complexes have been prepared by reaction of [{Ti(η(5)-C(5)Me(5))(μ-NH)}(3)(μ(3)-N)] (1) with halide, triflate, or amido derivatives of the rare-earth metals. Treatment of 1 with metal halide complexes [MCl(3)(thf)(n)] or metal trifluoromethanesulfonate derivatives [M(O(3)SCF(3))(3)] at room temperature affords the cube-type adducts [X(3)M{(μ(3)-NH)(3)Ti(3)(η(5)-C(5)Me(5))(3)(μ(3)-N)}] (X = Cl, M = Sc (2), Y (3), La (4), Sm (5), Er (6), Lu (7); X = OTf, M = Y (8), Sm (9), Er (10)). Treatment of yttrium (3) and lanthanum (4) halide complexes with 3 equiv of lithium 2,6-dimethylphenoxido [LiOAr] produces the aryloxido complexes [(ArO)(3)M{(μ(3)-NH)(3)Ti(3)(η(5)-C(5)Me(5))(3)(μ(3)-N)}] (M = Y (11), La (12)). Complex 1 reacts with 0.5 equiv of rare-earth bis(trimethylsilyl)amido derivatives [M{N(SiMe(3))(2)}(3)] in toluene at 85-180 °C to afford the corner-shared double-cube nitrido compounds [M(μ(3)-N)(3)(μ(3)-NH)(3){Ti(3)(η(5)-C(5)Me(5))(3)(μ(3)-N)}(2)] (M = Sc (13), Y (14), La (15), Sm (16), Eu (17), Er (18), Lu (19)) via NH(SiMe(3))(2) elimination. A single-cube intermediate [{(Me(3)Si)(2)N}Sc{(μ(3)-N)(2)(μ(3)-NH)Ti(3)(η(5)-C(5)Me(5))(3)(μ(3)-N)}] (20) was obtained by the treatment of 1 with 1 equiv of the scandium bis(trimethylsilyl)amido derivative [Sc{N(SiMe(3))(2)}(3)]. The X-ray crystal structures of 2, 7, 11, 14, 15, and 19 have been determined. The thermal decomposition in the solid state of double-cube nitrido complexes 14, 15, and 18 has been investigated by thermogravimetric analysis (TGA) and differential thermal analysis (DTA) measurements, as well as by pyrolysis experiments at 1100 °C under different atmospheres (Ar, H(2)/N(2), NH(3)) for the yttrium complex 14.  相似文献   

10.
Alkylation of [{Ti(η(5)-C(5)Me(5))(μ-NH)}(3)(μ(3)-N)] with MeOTf occurs at the imido ligands to produce the methylamido derivative [Ti(3)(η(5)-C(5)Me(5))(3)(μ(3)-N)(μ-NH)(2)(μ-NHMe)(OTf)] which readily rearranges to form the methylimido complex [Ti(3)(η(5)-C(5)Me(5))(3)(μ(3)-N)(μ-NH)(μ-NH(2))(μ-NMe)(OTf)].  相似文献   

11.
Reactivity studies of oxo-Mo(IV) complexes, Tp(iPr)MoO{2-OC(6)H(4)C(O)R-κ(2)O,O'} (R = Me, Et, OMe, OEt, OPh, NHPh), containing chelated hydrogen-bond donor/acceptor phenolate ligands are reported. Hydrolysis/oxidation of Tp(iPr)MoO(2-OC(6)H(4)CO(2)Ph-κ(2)O,O') in the presence of methanol yields tetranuclear [Tp(iPr)MoO(μ-O)(2)MoO](2)(μ-OMe)(2) (1), while condensation of Tp(iPr)MoO{2-OC(6)H(4)C(O)Me-κ(2)O,O'} and methylamine gives the chelated iminophenolate complex, Tp(iPr)MoO{2-OC(6)H(4)C(Me)NMe-κ(2)O,N} (2), rather than the aqua complex, Tp(iPr)MoO{2-OC(6)H(4)C(Me)NMe-κO}(OH(2)). The oxo-Mo(IV) complexes are readily oxidized by dioxygen or hydrogen peroxide to the corresponding cis-dioxo-Mo(VI) complexes, Tp(iPr)MoO(2){2-OC(6)H(4)C(O)R}; in addition, suitable one-electron oxidants, e.g., [FeCp(2)]BF(4) and [N(C(6)H(4)Br)(3)][SbCl(6)], oxidize the complexes to their EPR-active (g(iso) ≈ 1.942) molybdenyl counterparts (3, 4). Molybdenyl complexes such as Tp(iPr)MoOCl{2-OC(6)H(4)C(O)R} (5) and Tp(iPr)MoOCl(2) also form when the complexes react with chlorinated solvents. The ester derivatives (R = OMe, OEt, OPh) react with propylene sulfide to form cis-oxosulfido-Mo(VI) complexes, Tp(iPr)MoOS{2-OC(6)H(4)C(O)R}, that crystallize as dimeric μ-disulfido-Mo(V) species, [Tp(iPr)MoO{2-OC(6)H(4)C(O)R}](2)(μ-S(2)) (6-8). The crystal structures of [Tp(iPr)MoO(μ-O)(2)MoO](2)(μ-OMe)(2), Tp(iPr)MoO{2-OC(6)H(4)C(Me)NMe}, Tp(iPr)MoOCl{2-OC(6)H(4)C(O)NHPh}·{2-HOC(6)H(4)C(O)NHPh}, and [Tp(iPr)MoO{2-OC(6)H(4)C(O)R}](2)(μ-S(2)) (R = OMe, OEt) are reported.  相似文献   

12.
A series of mixed bis(μ-silylene) complexes of rhodium and iridium [RhIr(CO)(2)(μ-SiHR)(μ-SiR(1)R(2))(dppm)(2)] (R = R(1) = R(2) = Ph (4); R = R(1) = Ph, R(2) = Cl (5); R = R(1) = Ph, R(2) = Me (6); R = 3,5-C(6)H(3)F(2), R(1) = Ph, R(2) = Me (7); R = 3,5-C(6)H(3)F(2), R(1) = 2,4,6-C(6)H(2)Me(3), R(2) = H (8)) have been synthesized by the reaction of the silylene-bridged dihydride complexes, [RhIr(H)(2)(CO)(2)(μ-SiHR)(dppm)(2)] (1, R = Ph; 2, R = C(6)H(3)F(2)), with a number of secondary or primary silanes (Ph(2)SiH(2), PhClSiH(2), PhMeSiH(2), C(6)H(2)Me(3)SiH(3)). The influence of substituents and π-stacking interactions on the Si···Si distance (determined by X-ray crystallography) in this series and the implications regarding the nature of the Si···Si interactions are discussed. A series of novel (μ-silylene)/(μ-germylene) complexes, [RhIr(CO)(2)(μ-SiHPh)(μ-GePh(2))(dppm)(2)] (9) and [RhIr(CO)(2)(μ-SiR(1)R(2))(μ-GeHPh)(dppm)(2)] (R(1) = Ph, R(2) = H (11); R(1) = R(2) = Ph (12); R(1) = Ph, R(2) = Me (13)), have also been synthesized by reaction of the silylene-bridged dihydride complex, [RhIr(H)(2)(CO)(2)(μ-SiHPh)(dppm)(2)] (1), with 1 equiv of diphenylgermane and by reaction of the germylene-bridged dihydride complex, [RhIr(H)(2)(CO)(2)(μ-GeHPh)(dppm)(2)] (3), with 1 equiv of the respective silanes. These complexes have been characterized by multinuclear NMR spectroscopy and X-ray crystallography.  相似文献   

13.
Iridabicycles [Ir{κ3-N,C,O-(pyC(H)=C(C(O)Me)2}(Cl)(L−L)](L−L=cod (cod=1,5-cyclooctadiene), 1 a ; bipy (bipy=2,2’-bipyridine), 1 b ) have been obtained by oxidative coordination of 3-(pyridine-2-yl-methylene)pentane-2,4-dione L1 , to the complexes [{Ir(μ-Cl)(cod)}2] and [{Ir(μ-Cl)(coe)2}2] (coe=cis-cyclooctene), the latter in the presence of bipy. Remarkably, cleavage of the C3−C(O)Me bond of L1 has instead been achieved in the reaction with [Ir(Cl)(dmb)2] (dmb=2,3-dimethylbutadiene), yielding a compound formulated as [Ir{κ2-N,C-(pyC(H)C(C(O)Me))}(CO)(μ-Cl)(Me)]2, 2 . Treatment of dimer 2 with DMSO or PMe3 produced the complexes[Ir{κ2-N,C-(pyC(H)C(C(O)Me)}(CO)Cl(Me)L] (L=DMSO, 3 a ; PMe3, 3 b ). Plausible mechanisms for the reactions leading to complexes 1 and 2 are proposed by means of DFT calculations.  相似文献   

14.
Incorporation of M(CO)(3) fragments by trinuclear Ti complexes [{Ti(3)Cp(μ(3)-CR)}(μ-O)(3)] and [{Ti(3)Cp(μ(3)-N)}(μ-NH)(3)] (Cp*=eta(5)-C(5)Me(5)) leads to the formation of an unprecedented class of heterometallic clusters with cubane structure [e.g., Eq. (a)]. Density functional calculations on these complexes indicate the existence of electron delocalization in the Ti(3)M cores (M=Cr, Mo, W).  相似文献   

15.
Two molecules of C(2)(CO(2)Me)(2) or isocyanides could be added to the title hydride complex under mild conditions to give dienyl-[W(2)Cp(2){μ-η(1),κ:η(2)-C(CO(2)Me)=C(CO(2)Me)C(CO(2)Me)=CH(CO(2)Me)}(μ-PCy(2))(CO)(2)] (Cp = η(5)-C(5)H(5)), diazadienyl-[W(2)Cp(2){μ-κ,η:κ,η-C{CHN(4-MeO-C(6)H(4))}N(4-MeO-C(6)H(4))}(μ-PCy(2))(CO)(2)] or aminocarbyne-bridged derivatives [W(2)Cp(2){μ-CNH(2,6-Me(2)C(6)H(3))}(μ-PCy(2)){CN(2,6-Me(2)C(6)H(3))}(CO)]. In contrast, its reaction with excess (4-Me-C(6)H(4))C(O)H gave the C-O bond cleavage products [W(2)Cp(2){CH(2)(4-Me-C(6)H(4))}(O)(μ-PCy(2))(CO)(2)] and [W(2)Cp(2){μ-η:η,κ-C(O)CH(2)(4-Me-C(6)H(4))}(O)(μ-PCy(2))(CO)].  相似文献   

16.
Anilido phosphinimino ancillary ligand H(2)L(1) reacted with one equivalent of rare earth metal trialkyl [Ln{CH(2)Si(CH(3))(3)}(3)(thf)(2)] (Ln=Y, Lu) to afford rare earth metal monoalkyl complexes [L(1)LnCH(2)Si(CH(3))(3)(THF)] (1 a: Ln=Y; 1 b: Ln=Lu). In this process, deprotonation of H(2)L(1) by one metal alkyl species was followed by intramolecular C--H activation of the phenyl group of the phosphine moiety to generate dianionic species L(1) with release of two equivalnts of tetramethylsilane. Ligand L(1) coordinates to Ln(3+) ions in a rare C,N,N tridentate mode. Complex l a reacted readily with two equivalents of 2,6-diisopropylaniline to give the corresponding bis-amido complex [(HL(1))LnY(NHC(6)H(3)iPr(2)-2,6)(2)] (2) selectively, that is, the C--H activation of the phenyl group is reversible. When 1 a was exposed to moisture, the hydrolyzed dimeric complex [{(HL(1))Y(OH)}(2)](OH)(2) (3) was isolated. Treatment of [Ln{CH(2)Si(CH(3))(3)}(3)(thf)(2)] with amino phosphine ligands HL(2-R) gave stable rare earth metal bis-alkyl complexes [(L(2-R))Ln{CH(2)Si(CH(3))(3)}(2)(thf)] (4 a: Ln=Y, R=Me; 4 b: Ln=Lu, R=Me; 4 c: Ln=Y, R=iPr; 4 d: Ln=Y, R=iPr) in high yields. No proton abstraction from the ligand was observed. Amination of 4 a and 4 c with 2,6-diisopropylaniline afforded the bis-amido counterparts [(L(2-R))Y(NHC(6)H(3)iPr(2)-2,6)(2)(thf)] (5 a: R=Me; 5 b: R=iPr). Complexes 1 a,b and 4 a-d initiated the ring-opening polymerization of d,l-lactide with high activity to give atactic polylactides.  相似文献   

17.
Ni(6) clusters of the general formula [{Ni(3)L(n)(OAc)(OH)}(2)(X)(OAc)(H(2)O)(2)] (n = 1, 2; X = Cl(-) or N(3)(-), (L(n))(3-) = hexadentate tritopic ligands) can be isolated by spontaneous self-assembly, from mixtures of Ni(OAc)(2), H(3)L(n), NMe(4)OH·5H(2)O and NaX in adequate molar ratios. Thus, four new hexanuclear complexes [{Ni(3)L(1)(OAc)(OH)}(2)Cl(OAc)(H(2)O)(2)]·7.5H(2)O (1·7.5H(2)O), [{Ni(3)L(2)(OAc)(OH)}(2)Cl(OAc)(H(2)O)(2)]·2H(2)O·7.5MeOH (2·2H(2)O·7.5MeOH), [{Ni(3)L(1)(OAc)(OH)}(2)(N(3))(OAc)(H(2)O)(2)]·6H(2)O (3·6H(2)O) and [{Ni(3)L(2)(OAc)(OH)}(2)(N(3))(OAc)(H(2)O)(2)]·4H(2)O (4·4H(2)O) were obtained and fully characterised. 1·7.5H(2)O and 2·2H(2)O·7.5MeOH were isolated in the form of single crystals, the latter losing solvate on drying, to yield 2·2H(2)O. Recrystallisation of 3·6H(2)O in MeCN/MeOH also generates single crystals of 3·H(2)O·2MeOH·2MeCN. Their X-ray characterisation shows that these Ni(6) clusters can be considered to be built from two triangular trinuclear [Ni(3)L(n)(OAc)(OH)](+) subunits with different connectors. In addition, these studies demonstrate that the (L(n))(3-) ligands behave as trinucleating, adopting such a conformation that induces chirality in the isolated compounds. In this way, 3·H(2)O·2MeOH·2MeCN appears particularly interesting, since it emerges as homochiral after undergoing spontaneous resolution upon crystallisation. The magnetic characterisation of 1·7.5H(2)O to 3·6H(2)O reveals that the three compounds present an overall antiferromagnetic coupling. The intricate magnetic behaviour of these clusters, mediated by a total of 14 bridges of different kinds, was analysed and satisfactorily interpreted in light of DFT calculations.  相似文献   

18.
Acyclic o-phenylene-bridged bis(anilido-aldimine) compounds, o-C(6)H(4){C(6)H(2)R(2)N=CH-C(6)H(4)-(H)N(C(6)H(3)R'(2))}(2) and related 30-membered macrocyclic compounds, o-C(6)H(4){C(6)H(2)R'(2)N=CH-C(6)H(4)-(H)N-C(6)H(2)R(2)}(2) (o-C(6)H(4)) are prepared. Successive additions of Me(2)Zn and SO(2) gas to the bis(anilido-aldimine) compounds afford quantitatively dinuclear mu-methylsulfinato zinc complexes, o-C(6)H(4){(C(6)H(2)R(2)N=CH-C(6)H(4)-N(C(6)H(3)R'(2))-kappa(2)-N,N)Zn(mu-OS(O)Me)}(2) (R = iPr and R' = iPr, 29; R = Et and R' = Et, 30; R = Me and R'= Me, 31; R = Me and R' = iPr, 32; R = Et and R' = Me, 33; R = Et and R' = iPr, 34; R = iPr and R' = Et, 35) and o-C(6)H(4){C(6)H(2)R'(2)N=CH-C(6)H(4)-N-C(6)H(2)R(2)-kappa(2)-N,N)Zn(mu-OS(O)Me)}(2) (o-C(6)H(4)) (R = Et and R'= Et, 36; R = Me and R' = Me, 37; R = iPr and R' = Me, 38; R = Et and R' = Me, 39; R = Me and R'= iPr, 40). Molecular structures of 34 and 40 are confirmed by X-ray crystallography. Complexes 30-35 show high activity for cyclohexene oxide/CO(2) copolymerization at low [Zn]/[monomer] ratio (1:5600), whereas the complex of mononucleating beta-diketiminate {[(C(6)H(3)Et(2))N=C(Me)CH=C(Me)N(C(6)H(3)Et(2))]Zn(mu-OS(O)Et)}(2) shows negligible activity in the same condition. Activity is sensitive to the N-aryl ortho substituents and the highest activity is observed with 32. Turnover number up to 2980 and molecular weight (M(n)) up to 284 000 are attained with 32 at such a highly diluted condition as [Zn]/[monomer] = 1:17 400. Macrocyclic complexes 36-40 show negligible activity for copolymerization.  相似文献   

19.
The reactivity of two β-diketiminate coordinated magnesium(I) dimers, [LMgMgL], L=[(RNCMe)(2) CH](-) , R=C(6) H(3) iPr(2) -2,6 ((Dip) Nacnac(-) ) or mesityl ((Mes) Nacnac(-) ), towards a series of isonitriles and nitriles have been examined. Reactions with the isonitriles, RN?C: (R=tBu or C(6) H(3) Me(2) -2,6 (Xyl)), led to reductive C?C couplings and the formation of [{((Dip) Nacnac)Mg}(2) {μ-(XylN=C-)(2) }] and [{((Mes) Nacnac)Mg}(2) {μ-(tBuN=C-)(2) }], or a reductive N?C cleavage and the generation of the magnesium cyanide complex, [{((Dip) Nacnac)Mg(μ-CN)}(3) ]. Reactions of the magnesium dimers with benzonitrile, PhC?N, afforded the C?C-coupled products, [((Dip) Nacnac)Mg[μ-{N=C(Ph)-}(2) ]Mg(NCPh)((Dip) Nacnac)], and [{{((Mes) Nacnac)Mg}(2) [μ-{N=C(Ph)-}(2) ]}(2) ], whereas the reductive C?C cleavage of tBuC?N gave rise to a mixture of [((Dip) Nacnac)Mg(tBu)(NCtBu)] and [{((Dip) Nacnac)Mg(μ-CN)}(3) ]. In contrast, a combination of net nitrile isomerization and C?C coupling processes was involved in the reduction of Me(3) SiC?N, which yielded [{((Dip) Nacnac)Mg}(2) {μ-(Me(3) SiN=C-)(2) }]. All new compounds were crystallographically and spectroscopically characterized. The outcomes of the reported reactions were found to be dependent upon both the steric bulk of the magnesium(I) reagent, and the nature of the isonitrile/nitrile substituent. This combined with a high degree of selectivity for the reactions, indicates that magnesium(I) dimers may find use by organic and organometallic chemists as viable alternatives to currently available reducing agents that are utilized for the reduction of unsaturated organic substrates.  相似文献   

20.
Four new iron(III) complexes were obtained by the reaction of 4-salicylideneamino-1,2,4-triazole (Hsaltrz) and selected dinuclear μ-oxo-bridged iron(III) Schiff base complexes [{FeL(4)}(2)(μ-O)], where L(4) represents a terminal tetradentate dianionic Schiff-base ligand. X-ray structural analysis revealed a novel bridging mode of κN,κO of the saltrz ligand to form dinuclear complexes [{Fe(salen)(μ-saltrz)}(2)]·CH(3)OH (1) (H(2)salen = N,N'-ethylenebis(salicylimine)) and [{Fe(salpn)(μ-saltrz)}(2)] (2) (H(2)salpn = N,N'-1,2-propylenbis(salicylimine)), whereas one-dimensional (1D) zig-zag chains were formed in the case of [{Fe(salch)(μ-saltrz)}·0.5CH(3)OH](n) (3) (H(2)salch = N,N'-cyclohexanebis(salicylimine)) and [Fe(salophen)(μ-saltrz)](n) (4) (H(2)salophen = N,N'-o-phenylenebis(salicylimine)). It was also shown that the rigidity of the terminal ligand L(4) can be considered as the key factor for the molecular dimensionality of the products. The thorough magnetic analysis based on SQUID experiments, including the isotropic exchange and the zero-field splitting of both temperature and field dependent data, was performed for dimeric (1 and 2) and also for polymeric compounds (3 and 4) and revealed weak antiferromagnetic exchange mediated by the saltrz anions with much larger D-parameter (|D|?|J|).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号