首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report a study of the effects of confinement in multi-walled carbon nanotubes and mesoporous silica glasses (SBA-15) on the solid structure and melting of both H(2)O and D(2)O ice, using differential scanning calorimetry, dielectric relaxation spectroscopy, and neutron diffraction. Multi-walled nanotubes of 2.4, 3.9 and 10 nm are studied, and the SBA-15 studied has pores of mean diameter 3.9 nm; temperatures ranging from approximately 110 to 290 K were studied. We find that the melting point is depressed relative to the bulk water for all systems studied, with the depression being greater in the case of the silica mesopores. These results are shown to be consistent with molecular simulation studies of freezing in silica and carbon materials. The neutron diffraction data show that the cubic phase of ice is stabilized by the confinement in carbon nanotubes, as well as in silica mesopores, and persists up to temperatures of about 240 K, above which there is a transition to the hexagonal ice structure.  相似文献   

2.
Hexagonally structured mesoporous carbons C15 and CMK-5 and cubically structured carbon C48 were synthesized using ordered silica SBA-15 and MCM-48 as templates and carbon precursors of different structures. The surfaces of these ordered carbons were chemically functionalized by employing an approach, in which the selected diazonium compounds were in situ generated and reacted with the carbon frameworks of the mesoporous carbons. The aromatic organic molecules containing chlorine, ester, and alkyl groups were covalently attached to the surface of these ordered mesoporous carbons. The presence of functional groups on the modified carbons was confirmed with Fourier transform infrared spectroscopy, thermogravimetric analysis, and nitrogen adsorption. The BET-specific surface area and the pore width of ordered carbons were significantly reduced, whereas the primary structure of these ordered carbons and their unit cells were intact. Basically, the density of grafted functional groups is related to the specific surface area of the sample, particularly the surface area of mesopores. The surface functionalization reaction takes place only on the external surface of carbon C15, while it occurs on both of the internal and external surface of CMK-5 carbon with the nanopipe structure. The presence of the micropores in CMK-5 carbon should be responsible for its lower grafting density because the small micropores are inaccessible in the reaction. It was also proposed that the preferred adsorption/reaction in C48 may be related to the observed unsymmetrical degradation of the XRD patterns for the functionalized C48 samples. The chemical modification process considerably reduced the primary mesopores in these ordered carbons by approximately 1-1.5 nm, affording carbons with micropores in the cases of C15 and C48, and mixed micropores and small mesopores in the case of CMK-5. A grafting density of approximately 0.9-1.5 micromol/m(2) was achieved under current research.  相似文献   

3.
以SBA-15为模板,二茂铁为碳源,利用化学气相沉积(CVD)法合成了Fe/CMK-5复合材料.用粉末X射线衍射、低温N2吸附、热重分析、透射电镜等对复合材料进行了表征.结果表明复合材料中碳以CMK-5结构存在,Fe颗粒均匀地分布在CMK-5的骨架中,通过调节CVD时间可改变Fe/CMK-5的结构参数.在pH值为11的缓冲溶液中研究了Fe/CMK-5系列复合材料对溶菌素(lysozyme)的吸附性能,考察了溶菌素在Fe/CMK-5孔道内部的结构稳定性以及在不同pH值溶液中的泄露量.  相似文献   

4.
ZSM-5 monolith of uniform mesoporous channels   总被引:6,自引:0,他引:6  
A ZSM-5 monolith of uniform mesopores(meso-ZSM-5) was synthesized with the template method using carbon aerogel of uniform mesopores of great pore volume. The pore size distribution determined by N2 adsorption showed the presence of mesopores with an average pore width of 11 nm and micropores with an average pore width of 0.51 nm. Field emission scanning electron micrograph observation revealed the presence of uniform mesopores. X-ray diffraction and FT-IR provided evidence that the synthesized meso-ZSM-5 monolith has a highly crystalline ZSM-5 structure.  相似文献   

5.
Nanocast silica (NCS-1) was synthesized by a casting process by employing the mesoporous carbon CMK-3 (the replica of SBA-15) as a template, tetraethoxysilane (TEOS) as the silica source, and hydrochloric acid (HCl) as the catalyst. The ordered carbon template was removed by employing different methods, such as calcination, thermal treatment followed by calcination, and controlled combustion. According to XRD and TEM characterization, NCS-1 exhibits an ordered structure with hexagonal symmetry and retains the morphology of the original SBA-15 used for the synthesis of CMK-3 over two replication steps on the nanometer scale. This demonstrates the well-connected porosity in CMK-3 type carbon, which can be used as a mold to synthesize mesostructured materials. The nitrogen adsorption isotherms generally show type IV shape, indicating mesoporous characteristics. The structure of NCS-1 is strongly influenced by variables of the nanocasting process, such as the loading amount of silica, hydrolysis temperature, and carbon removal methods. The surface area, pore size, and pore volume of NCS-1 can be tuned to a certain range by varying these parameters.  相似文献   

6.
To examine the reason for the formation and the structure of cubic ice in a restricted space, we measured the powder x-ray diffraction patterns of cubic ice formed within the mesopores of porous silicas as a function of pore size (4-70 nm). The results strongly suggest that cubic ice formed in the mesopores does not take a cubic structure as envisaged by Konig. It may be actually composed of very small crystallites of hexagonal ice that contains a large amount of growth faults depending on the crystallite size, that is, ice with disordered stacking sequence. Suppression of crystal growth of ice in the mesopores seems to be a vital factor for the formation and the stability of cubic ice.  相似文献   

7.
A study was carried out on the effect of the conditions of the matrix carbonization of sucrose in MCM-48 and SBA-15 silica mesoporous molecular sieves on the structure and adsorption properties of the resultant CMK-1 and CMK-3 mesoporous carbon molecular sieves. CMK-3 was found to be a structurally similar replica of SBA-15. An exact replica is not formed in the case of MCM-48. This failure is attributed to considerable deformation of the matrix during the carbonization process due to the bicontinuous pore system and thinner framework walls. This is probably related to transformation of the carbon material into a low symmetry product upon detemplating of the C/MCM-48 composite (dissolution of the silica). Mesoporous carbon materials were obtained with good adsorption structure features. Translated from Teoreticheskaya i éksperimental'naya Khimiya, Vol. 44, No. 6, pp. 365–370, November–December, 2008.  相似文献   

8.
We have carried out a comparative study of matrix carbonization of some organic precursors (sucrose, polydivinylbenzene, polyphenol-formaldehyde, polyacrylonitrile, acetonitrile) in SBA-15 and KIT-6 silica mesoporous molecular sieves. We have shown that carbon mesoporous molecular sieves of the CMK-8 type, obtained in KIT-6 mesopores, have better adsorption characteristics due to the features of the three-dimensional cubic structure, the larger pore volume and thickness of the walls of the framework. The maximum micropore volume is observed in CMK-3 and CMK-8, obtained by carbonization of polyphenol-formaldehyde and polydivinylbenzene, while the greatest specific surface area is observed on carbonization of sucrose, where the maximum hydrogen adsorption capacity is achieved at a level of ∼1.4 wt.% (77 K, 1 atm). We show that the mesopore surface coverage by hydrogen in carbon mesoporous molecular sieves increases as the degree of graphitization increases.  相似文献   

9.
The density and intermolecular structure of water in carbon micropores (w = 1.36 nm) are investigated by small-angle X-ray scattering (SAXS) and X-ray diffraction (XRD) measurements between 20 K and 298 K. The SAXS results suggest that the density of the water in the micropores increased with increasing temperature over a wide temperature range (20-277 K). The density changed by 10%, which is comparable to the density change of 7% between bulk ice (I(c)) at 20 K and water at 277 K. The results of XRD at low temperatures (less than 200 K) show that the water forms the cubic ice (I(c)) structure, although its peak shape and radial distribution functions changed continuously to those of a liquid-like structure with increasing temperature. The SAXS and XRD results both showed that the water in the hydrophobic nanospaces had no phase transition point. The continuous structural change from ice I(c) to liquid with increasing temperature suggests that water shows negative thermal expansion over a wide temperature range in hydrophobic nanospaces. The combination of XRD and SAXS measurements makes it possible to describe confined systems in nanospaces with intermolecular structure and density of adsorbed molecular assemblies.  相似文献   

10.
Helical 1,2-ethylene-silica nanofibers with lamellar mesopores on the surfaces and twisted rod-like mesopores inside were prepared according to literature procedures. After carbonization, helical carbon/ silica nanofibers with lamellar mesopores on the surfaces and twisted rod-like micropores inside were obtained. The morphologies and pore architectures of the carbon]silica nanofibers were characterized using transmission electron microscopy, field-emission scanning electron microscopy, powder X-ray diffraction and N2 sorptions. Although the mesopores inside shrank into micropores, the helical nanostructure remained. Moreover, several carbon/silica nanofibers with lamellar mesopores on the surfaces and concentric circular micropores inside were also obtained. After being calcined in air, helical silica nanofibers with lamellar mesopores on the surfaces and twisted rod-like micropores inside were produced as well.  相似文献   

11.
Highly porous carbons have been prepared by the chemical activation of two mesoporous carbons obtained by using hexagonal- (SBA-15) and cubic (KIT-6)-ordered mesostructured silica as hard templates. These materials were investigated as sorbents for CO(2) capture. The activation process was carried out with KOH at different temperatures in the 600-800°C range. Textural characterization of these activated carbons shows that they have a dual porosity made up of mesopores derived from the templated carbons and micropores generated during the chemical activation step. As a result of the activation process, there is an increase in the surface area and pore volume from 1020 m(2)g(-1) and 0.91 cm(3)g(-1) for the CMK-8 carbon to a maximum of 2660 m(2)g(-1) and 1.38 cm(3)g(-1) for a sample activated at 800°C (KOH/CMK-8 mass ratio of 4). Irrespective of the type of templated carbon used as precursor or the operational conditions used for the synthesis, the activated samples exhibit similar CO(2) uptake capacities, of around 3.2 mmol CO(2)g(-1) at 25°C. The CO(2) capture capacity seems to depend on the presence of narrow micropores (<1 nm) rather than on the surface area or pore volume of activated carbons. Furthermore, it was found that these porous carbons exhibit a high CO(2) adsorption rate, a good selectivity for CO(2)-N(2) separation and they can be easily regenerated.  相似文献   

12.
Trimodal hierarchical yolk-shell materials consisting of TS-1 core and mesoporous carbon shell(YS-TS-1@MC) was successfully synthesized by using TS-1@mesosilica as hard template,sucrose as carbon source and organic base tetrapropylammonium hydroxide(TPAOH) as silica etching agent.The resultant YS-TS-1@MC contains the micropores(0.51 nm) in TS-1 core,the mesopores(2.9 nm) in carbon shell as well as a void or a stack pore between TS-1 fragcments(TS-1 intercrystal mesopores,~18.4 nm).Under the rigorous etching conditions,the crystalline structure of TS-1 core was well retained.The YS-TS-1@MC served as a good support for palladium nano-particles(Pd NPs) or Rh(OH)x species,giving rise to efficient bifunctional catalysts for the tandem reactions including one-pot synthesis of propylene oxide or amides.  相似文献   

13.
以经盐酸预处理的碳纳米管为第二模板,在不添加其它有机溶剂的情况下,仅通过控制晶化条件,即采用变温水热晶化法合成具有多级结构的ZSM-5分子筛.通过x射线衍射、红外光谱测试、透射电镜和N2吸附对合成的分子筛进行了表征,结果表明,该合成分子筛呈近球形,是由纳米棒自组装形成的具有多级结构的亚微米球.该分子筛改性后用于甲烷无氧脱氢芳构化反应,显示出良好的催化性能,甲烷转化率最初达到19%,反应至24 h时甲烷转化率仍保持在10%左右,并且保持了较高的芳香物选择性(达到50%以上).  相似文献   

14.
Silica nanotubes were synthesized using the multi-walled carbon nanotubes (MWCNTs) as the template material. First, we prepared silica coated MWCNT composites by surface oxidation of MWCNTs using KMnO(4) in the presence of a phase transfer catalyst and followed by grafting of 2-aminoethyl 3-aminopropyl trimethoxy silane, AEAPS. The amine groups in grafted AEAPS on MWCNTs could activate the silica shell formation by acid-base interaction. The synthesized silica was formed a uniform layer on MWCNTs with a controllable thickness and possessed sturdy 3-dimensional stability. After calcinations at 800 degrees C, the inner MWCNTs of the composite were completely decomposed and the outer silica shell layer maintained without distortion of its original shape. Finally, we could obtain the silica nanotubes having 13.0 nm of average layer thickness.  相似文献   

15.
Bimodal mesoporous silica material composed of 30-40 nm sized nanoparticles with 3.5 nm sized three-dimensionally interconnected mesopores was synthesized under neutral conditions using sodium silicate as a silica source. Using the bimodal mesoporous silica as a template, bimodal mesoporous carbon having 4 nm sized framework mesopores and approximately 30 nm sized textural pores was synthesized.  相似文献   

16.
Highly ordered mesoporous silica can be regenerated from a mesoporous carbon CMK-3 that is a negative replica of mesoporous silica SBA-15, indicating reversible replication between carbon and inorganic materials.  相似文献   

17.
以碳纳米管为模板合成的带有介孔和微孔的ZSM-5分子筛具有不同的复合结构。用三氯乙酸(TCA)可选择性地将中孔的铝脱除。基于TCA分子大小,它可能只扩散到中孔中,因而使得微孔部分不脱铝。从分子筛结构中脱除铝原子导致催化剂中出现中空的空间。若将硅原子填充到空位中,那么介孔部分的结构会变得与硅酸盐类似,不具有催化性能。本文使用含硅的溶液来填充空位,将硅原子直接取代中孔结构中的铝原子。通过此特殊方法改变微孔和介孔的几何形状和性质,从而使改性HZSM-5上的积碳量从14%降低至3%。  相似文献   

18.
The adsorption isotherms of water at 303 K and N2 at 77 K on various kinds of porous carbons were compared with each other. The saturated amounts of water adsorbed on carbons almost coincided with amounts of N2 adsorption in micropores. Although carbon aerogel samples have mesopores of the great pore volume, the saturated amount of adsorbed water was close to the micropore volume which is much small than the mesopore volume. These adsorption data on carbon aerogels indicated that the water molecules are not adsorbed in mesopores, but in micropores only. The adsorption isotherms of water on activated carbon having micropores of smaller than 0.7 nm in width had no clear adsorption hysteresis, while the water adsorption isotherms on micropores of greater than 0.7 nm had a remarkable adsorption hysteresis above P/P0 = 0.5. The disappearance of the clear hysteresis for smaller micropores suggested that the cluster of water molecules of about 0.7 nm in size gives rise to the water adsorption on the hydrophobic micropores; the formation and the structure of clusters of water molecules were associated with the adsorption mechanism. The cluster-mediated pore filling mechanism was proposed with a special relevance to the evidence on the formation of the ordered water molecular assembly in the carbon micropores by in situ X-ray diffraction.  相似文献   

19.
Bimodal macro-mesoporous silica networks have been prepared in a simple one-pot synthesis using an inexpensive tetramine surfactant and tetraethoxysilane as a silica precursor. These novel materials show high pore volumes and templated mesopores (average pore size 3.0 nm) embedded in 20 nm thick walls forming interparticle large meso/macropores. The judicious control of the pH during the silica formation allows for the precise control of the interparticle condensation, likely due to the change in the interaction between the tetramine surfactant and the silica precursors. Finally, a highly porous carbon replica with bimodal porosity was prepared by using the bimodal silica as a hard sacrificial template. The microstructure of the silica template was accurately transferred to the carbon material obtaining high surface areas (up to 1300 m2 g−1) and total pore volumes ≥2 cm3 g−1.  相似文献   

20.
Two mesoporous ordered carbon materials (MOCs) have been synthesized from silica templates by using sucrose as the carbon precursor. The textural characterization using Ar, N2, and CO2 adsorption combined with neutron diffraction showed that the two samples exhibit a significant microporous volume close to 0.5 cm3/g and an ordered network of mesopores. For both MCM48 and SBA15 templated carbons, adsorption first proceeds with the filling of micropores and then by the filling of mesopores with an adsorption energy close to the enthalpy of vaporization of bulk hydrogen. The hydrogen isosteric heat of adsorption in the micropores (6-8 kJ/mol) is significantly larger than that on the graphite surface (approximately 4 kJ/mol) but still too small for a reasonable use of these MOCs as hydrogen adsorbents for storage at room temperature. The neutron scattering study showed that the structure at 10 K of the adsorbed deuterium phase is poorly organized; it exhibits short and medium range orders of about 13 angstroms in micropores and about 20 angstroms in mesopores, respectively. The average distance between adsorbed molecules decreases with coverage by about 10%. In the mesopores, the diffracted line is consistent with a pseudohexagonal packing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号