首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The photodissociation dynamics of the ethoxy radical (CH3CH2O) have been studied at energies from 5.17 to 5.96 eV using photofragment coincidence imaging. The upper state of the electronic transition excited at these energies is assigned to the C2A'state on the basis of electronic structure calculations. Fragment mass distributions show two photodissociation channels, OH + C2H4 and CH3 + CH2O. The presence of an additional photodissociation channel, identified as D + C2D4O, is revealed in time-of-flight distributions from the photodissociation of CD3CD2O. The product branching ratios and fragment translational energy distributions for all of the observed mass channels are nonstatistical. Moreover, the significant yield of OH + C2H4 product suggests that the mechanism for this channel involves isomerization on the excited-state surface. Photodissociation at a much lower yield is seen following excitation at 3.91 eV, corresponding to a vibronic band of the B2A' <-- X2A' transition.  相似文献   

2.
The photochemistry of Cl(2)O (dichlorine monoxide) was studied using measurements of its UV/vis absorption spectrum temperature dependence and the O((3)P) atom quantum yield, Φ(Cl(2)O)(O)(λ), in its photolysis at 193 and 248 nm. The Cl(2)O UV/vis absorption spectrum was measured over the temperature range 201-296 K between 200 and 500 nm using diode array spectroscopy. Cl(2)O absorption cross sections, σ(Cl(2)O)(λ,T), at temperatures <296 K were determined relative to its well established room temperature values. A wavelength and temperature dependent parameterization of the Cl(2)O spectrum using the sum of six Gaussian functions, which empirically represent transitions from the ground (1)A(1) electronic state to excited states, is presented. The Gaussian functions are found to correlate well with published theoretically calculated vertical excitation energies. O((3)P) quantum yields in the photolysis of Cl(2)O at 193 and 248 nm were measured using pulsed laser photolysis combined with atomic resonance fluorescence detection of O((3)P) atoms. O((3)P) quantum yields were measured to be 0.85 ± 0.15 for 193 nm photolysis at 296 K and 0.20 ± 0.03 at 248 nm, which was also found to be independent of temperature (220-352 K) and pressure (17 and 28 Torr, N(2)). The quoted uncertainties are at the 2σ (95% confidence) level and include estimated systematic errors. ClO radical temporal profiles obtained following the photolysis of Cl(2)O at 248 nm, as reported previously in Feierabend et al. [J. Phys. Chem. A 114, 12052, (2010)], were interpreted to establish a <5% upper-limit for the O + Cl(2) photodissociation channel, which indicates that O((3)P) is primarily formed in the three-body, O + 2Cl, photodissociation channel at 248 nm. The analysis also indirectly provided a Cl atom quantum yield of 1.2 ± 0.1 at 248 nm. The results from this work are compared with previous studies where possible.  相似文献   

3.
Photodissociation dynamics of ketene at 157.6 nm has been investigated using the photofragment translational spectroscopic technique based on photoionization detection using vacuum-ultraviolet synchrotron radiation. Three dissociation channels have been observed: CH2+CO, CH+HCO, and HCCO+H. The product translational energy distributions and angular anisotropy parameters were measured for all three observed dissociation channels, and the relative branching ratios for different channels were also estimated. The experimental results show that the direct C-C bond cleavage (CH2+CO) is the dominant channel, while H migration and elimination channels are very minor. The results in this work show that direct dissociation on excited electronic state is much more significant than the indirect dissociation via the ground state in the ketene photodissociation at 157.6 nm.  相似文献   

4.
The rate coefficients for the reactions OH + ClOOCl --> HOCl + ClOO (eq 5) and OH + Cl2O --> HOCl + ClO (eq 6) were measured using a fast flow reactor coupled with molecular beam quadrupole mass spectrometry. OH was detected using resonance fluorescence at 309 nm. The measured Arrhenius expressions for these reactions are k5 = (6.0 +/- 3.5) x 10(-13) exp((670 +/- 230)/T) cm(3) molecule(-1) s(-1) and k6 = (5.1 +/- 1.5) x 10(-12) exp((100 +/- 92)/T) cm(3) molecule(-1) s(-1), respectively, where the uncertainties are reported at the 2sigma level. Investigation of the OH + ClOOCl potential energy surface using high level ab initio calculations indicates that the reaction occurs via a chlorine abstraction from ClOOCl by the OH radical. The lowest energy pathway is calculated to proceed through a weak ClOOCl-OH prereactive complex that is bound by 2.6 kcal mol(-1) and leads to ClOO and HOCl products. The transition state to product formation is calculated to be 0.59 kcal mol(-1) above the reactant energy level. Inclusion of the OH + ClOOCl rate data into an atmospheric model indicates that this reaction contributes more than 15% to ClOOCl loss during twilight conditions in the Arctic stratosphere. Reducing the rate of ClOOCl photolysis, as indicated by a recent re-examination of the ClOOCl UV absorption spectrum, increases the contribution of the OH + ClOOCl reaction to polar stratospheric loss of ClOOCl.  相似文献   

5.
The photodissociation dynamics of ICl has been studied near 304 and 280 nm on a simple miniature time of flight (mini-TOF) photofragment translational spectrometer with a short pulse of a weak acceleration field. An intense hot band effect was observed. Many small peaks were resolved in each photofragment translational spectrum (PTS). Based on simulations, the principal peaks were assigned not only to the different photodissociation channels (1) I + Cl, (2) I + Cl*, (3) I* + Cl, or (4) I* + Cl*, but also to the different chlorine isotopes (35Cl and Cl). Moreover, some extra peaks showed the existence of an intense hot 37 band effect from vibrationally excited ICl molecules, though only a few percent of ICl molecules remained in the vibrationally excited states in our supersonic molecular beam. Based on the spectra near 304 nm, the quantum yield Ф of each channel, the curve crossing, and the branching fraction σ from each transition state were determined.  相似文献   

6.
The photodissociation of Cl2O has been studied at 248 and 193 nm using photofragment translational spectroscopy (PTS) experiments with tunable VUV photoionization detection. The sole products observed were Cl, O and ClO fragments. Based on the derived translational energy distributions for the ClO and Cl photofragments we conclude that at 248 nm 15% of Cl2O excitation results in three-body dissociation. At 193 nm no Cl2 fragments are observed and we conclude that the oxygen atoms arise solely from three-body dissociation. Dissociation geometries derived from forward convolution fitting suggest two qualitatively distinct three-body dissociation pathways: asymmetric concerted dissociation and symmetric concerted dissociation in agreement with recent theoretical predictions.  相似文献   

7.
We present a direct current slice imaging study of tetrachloroethylene (C(2)Cl(4)) photodissociation, probing the resulting ground state Cl ((2)P(3/2)) and spin-orbit excited state Cl* ((2)P(1/2)) products. We report photofragment images, total translational energy distributions and the product branching ratio of Cl*/Cl following dissociation at 235 and 202 nm, obtained using a two-color reduced-Doppler dissociation/probe. Near 235 nm, the Cl translational energy distribution shows a peak at the limit of the available energy, indicating a direct dissociation through a σ*(C-Cl) ← π (C=C) transition, which is superimposed on a broader underlying distribution. The ground state Cl image and associated translational energy distribution at 202 nm is broad and peaked at lower energy, suggesting either internal conversion to the ground state or a lower excited state prior to dissociation. The Cl* images are similarly broad at both wavelengths. The branching ratio is presented as a function of recoil energy, but after integration shows a near-statistical average of Cl:Cl* as 70:30 at both wavelengths. All the images are largely isotropic, with anisotropy parameters (β) of 0.05 ± 0.03.  相似文献   

8.
Using photofragment translational spectroscopy and tunable vacuum-ultraviolet ionization, we measured the time-of-flight spectra of fragments upon photodissociation of vinyl fluoride (CH2CHF) at 157 and 193 nm. Four primary dissociation pathways--elimination of atomic F, atomic H, molecular HF, and molecular H2--are identified at 157 nm. Dissociation to C2H3 + F is first observed in the present work. Decomposition of internally hot C2H3 and C2H2F occurs spontaneously. The barrier heights of CH2CH --> CHCH + H and cis-CHCHF --> CHCH + F are evaluated to be 40+/-2 and 44+/-2 kcal mol(-1), respectively. The photoionization yield spectra indicate that the C2H3 and C2H2F radicals have ionization energies of 8.4+/-0.1 and 8.8+/-0.1 eV, respectively. Universal detection of photoproducts allowed us to determine the total branching ratios, distributions of kinetic energy, average kinetic energies, and fractions of translational energy release for all dissociation pathways of vinyl fluoride. In contrast, on optical excitation at 193 nm the C2H2 + HF channel dominates whereas the C2H3 + F channel is inactive. This reaction C2H3F --> C2H2 + HF occurs on the ground surface of potential energy after excitation at both wavelengths of 193 and 157 nm, indicating that internal conversion from the photoexcited state to the electronic ground state of vinyl fluoride is efficient. We computed the electronic energies of products and the ionization energies of fluorovinyl radicals.  相似文献   

9.
We present a comprehensive investigation of the dissociation dynamics following photoexcitation of 1,1-dichloroacetone (CH(3)COCHCl(2)) at 193 nm. Two major dissociation channels are observed: cleavage of a C-Cl bond to form CH(3)C(O)CHCl + Cl and elimination of HCl. The branching between these reaction channels is roughly 9:1. The recoil kinetic energy distributions for both C-Cl fission and HCl elimination are bimodal. The former suggests that some of the radicals are formed in an excited electronic state. A portion of the CH(3)C(O)CHCl photoproducts undergo secondary dissociation to give CH(3) + C(O)CHCl. Photoelimination of Cl(2) is not a significant product channel. A primary C-C bond fission channel to give CH(3)CO + CHCl(2) may be present, but this signal may also be due to a secondary dissociation. Data from photofragment translational spectroscopy with electron impact and photoionization detection, velocity map ion imaging, and UV-visible absorption spectroscopy are presented, along with G3//B3LYP calculations of the bond dissociation energetics.  相似文献   

10.
ClOOCl was prepared in situ in a temperature controlled photoreactor (v = 420 L) by photolyzing OClO/N2 mixtures in the wavelength range 300-500 nm at temperatures between 242 and 261 K and total pressures between 2 and 480 mbar. After switching off the lights, excess NO2 was added, and IR and UV spectra were monitored simultaneously as a function of time. By spectral stripping of all other known UV absorbers (in particular, other chlorine oxides and chlorine nitrate), we determined rate constants k-1 of the reaction ClOOCl (+M) --> ClO + ClO (+M) from the first-order decay of the residual UV absorption of ClOOCl at 246 and 255 nm. k-1,0 = [N2] x 7.6 x 10(-9) exp[(-53.6 +/- 6.0) kJ mol(-1)/RT] cm3 molecule(-1) s(-1) (2sigma) was derived for the low-pressure limiting rate constant. Application of Troe's expression for the limiting low-pressure rate constants of unimolecular decomposition reactions leads to E0 = Delta(r)H0(0)(ClOOCl-->ClO+ClO) = 66.4 +/- 3.0 kJ mol(-1). k-1,0 started to fall off from the pressure proportional low pressure behavior at p approximately 30 mbar; however, reliable extrapolation to the high pressure limit was not possible. The decomposition rate constants of ClOOCl were directly measured for the first time, and they are higher, depending on temperature and pressure, by factors between 1.5 and 4.2 as compared to experimental data on k-1 by Nickolaisen et al. [J. Phys. Chem. 1994, 98, 155] which were derived from the approach of ClO to thermal equilibrium with its dimer ClOOCl. Combination of the present dissociation rate constants with recommended temperature and pressure dependent data on the reverse reaction (k1) demonstrate inconsistencies between the dissociation and recombination rate constants. Summarizing laboratory data on k1 and k-1 above 250 K and field measurements on the ClO + ClO <= => ClOOCl equilibrium in the nighttime polar stratosphere close to 200 K, the expression Kc = k1/k-1 = 3.0 x 10(-27) exp(8433 K/T) cm3 molecule(-1) is derived for the temperature range 200-300 K.  相似文献   

11.
The photodissociation of CH2XCH2Y (X,Y=Br,Cl) through absorption of 193 nm photons was investigated using product translational spectroscopy. No stable CH2BrCH2 or CH2ClCH2 was detected. The recorded time-of-flight spectra indicate that these internally excited radicals dissociated into Y+C2H4 in a concerted reaction with the first C-X bond rupture. Product anisotropy implies that the overall reaction time for three-body formation is in a fraction of rotational period. According to an asynchronous concerted reaction model, the measured spectra were simulated with product translational energy distributions coupled by asymmetric angular distributions. For the mixed halide, CH2BrCH2Cl, triple products Br+Cl+C2H4 can be originated from the cleavage of either the C-Br bond or the C-Cl bond. The results are discussed and where appropriate, comparisons with previous investigations of the related molecules are included.  相似文献   

12.
We present the results of our product branching studies of the OH + C(2)D(4) reaction, beginning at the CD(2)CD(2)OH radical intermediate of the reaction, which is generated by the photodissociation of the precursor molecule BrCD(2)CD(2)OH at 193 nm. Using a crossed laser-molecular beam scattering apparatus with tunable photoionization detection, and a velocity map imaging apparatus with VUV photoionization, we detect the products of the major primary photodissociation channel (Br and CD(2)CD(2)OH), and of the secondary dissociation of vibrationally excited CD(2)CD(2)OH radicals (OH, C(2)D(4)/CD(2)O, C(2)D(3), CD(2)H, and CD(2)CDOH). We also characterize two additional photodissociation channels, which generate HBr + CD(2)CD(2)O and DBr + CD(2)CDOH, and measure the branching ratio between the C-Br bond fission, HBr elimination, and DBr elimination primary photodissociation channels as 0.99:0.0064:0.0046. The velocity distribution of the signal at m/e = 30 upon 10.5 eV photoionization allows us to identify the signal from the vinyl (C(2)D(3)) product, assigned to a frustrated dissociation toward OH + ethene followed by D-atom abstraction. The relative amount of vinyl and Br atom signal shows the quantum yield of this HDO + C(2)D(3) product channel is reduced by a factor of 0.77 ± 0.33 from that measured for the undeuterated system. However, because the vibrational energy distribution of the deuterated radicals is lower than that of the undeuterated radicals, the observed reduction in the water + vinyl product quantum yield likely reflects the smaller fraction of radicals that dissociate in the deuterated system, not the effect of quantum tunneling. We compare these results to predictions from statistical transition state theory and prior classical trajectory calculations on the OH + ethene potential energy surface that evidenced a roaming channel to produce water + vinyl products and consider how the branching to the water + vinyl channel might be sensitive to the angular momentum of the β-hydroxyethyl radicals.  相似文献   

13.
We have studied the photodissociation dynamics of expansion-cooled BrO radical both above (278-281.5 nm) and below (355 nm) the A (2)Pi(3/2) state threshold using velocity map ion imaging. A recently developed late-mixing flash pyrolytic reactor source was utilized to generate an intense BrO radical molecular beam. The relative electronic product branching ratios at 355 nm and from 278 to 281.5 nm were determined. We have investigated the excited state dynamics based on both the product branching and the photofragment angular distributions. We find that above the O((1)D(2)) threshold the contribution of the direct excitation to states other than the A (2)Pi(3/2) state and the role of curve crossing is considerably larger in BrO compared to that observed for ClO, in agreement with recent theoretical studies. The measurement of low velocity photofragments resulting from photodissociation just above the O((1)D(2)) threshold provides an accurate and direct determination of the A (2)Pi(3/2) state dissociation threshold of 35418+/-35 cm(-1), leading to a ground state bond energy of D(0)(0)(BrO)=55.9+/-0.1 kcal/mol.  相似文献   

14.
Photodissociation dynamics of chlorine peroxide adsorbed on ice   总被引:1,自引:0,他引:1  
Chlorine peroxide plays an important role in the chlorine-ozone chemistry in the antarctic stratosphere. Adsorption by ice crystals may alter its photochemistry in different ways. We have simulated the photodissociation of a ClOOCl molecule adsorbed on ice by means of a semiclassical representation of the excited state dynamics. Electronic energies and wave functions of ClOOCl are computed by an ad hoc reparametrized semiempirical method, and the interaction with ice is taken into account by a QM/MM strategy. The reaction mechanism is similar to what was previously found for the isolated molecule: sequential or almost simultaneous breaking of both Cl-O bonds leads to the 2Cl + O2 reaction products in most cases. The Cl atoms remain temporarily adsorbed on the ice surface, whereas O2 is ejected. The main effect for the overall chlorine chemistry is probably an increase of the photodissociation rates at long wavelengths, due to the change of adsorption cross sections induced by the interaction with ice.  相似文献   

15.
We have studied the wavelength-dependent photodissociation dynamics of jet-cooled ClO radical from 235 to 291 nm using velocity map ion imaging. We find that Cl(2P(3/2))+O(1D(2)) is the dominant channel above the O(1D(2)) threshold with minor contributions from the Cl(2P(J))+O(3P(J)) and Cl(2P(1/2))+O(1D(2)) channels. We have measured the photofragment angular distributions for each dissociation channel and find that the A 2pi state reached via a parallel transition carries most of the oscillator strength above the O(1D(2)) threshold. The formation of O(3P(J)) fragments with positive anisotropy is evidence of curve crossing from the A 2pi state to one of several dissociative states. The curve crossing probability increases with wavelength in good agreement with previous theoretical calculations. We have directly determined the O(1D(2)) threshold to be 38,050+/-20 cm(-1) by measuring O(1D(2)) quantum yield in the wavelength range of 260-270 nm. We also report on the predissociation dynamics of ClO below the O(1D(2)) threshold. We find that the branching ratio of Cl(2P(3/2))/Cl(2P(1/2)) is 1.5+/-0.1 at both 266 and 291 nm. The rotational depolarization of the anisotropy parameters of the Cl(2P(3/2)) fragments provides predissociation lifetimes of 1.5+/-0.2 ps for the 9-0 band and 1.0+/-0.4 ps for the 8-0 band, in reasonable agreement with previous spectroscopic and theoretical studies.  相似文献   

16.
The photodissociation dynamics of the tert-butyl radical (t-C(4)H(9)) were investigated using photofragment translational spectroscopy. The tert-butyl radical was produced from flash pyrolysis of azo-tert-butane and dissociated at 248 nm. Two distinct channels of approximately equal importance were identified: dissociation to H + 2-methylpropene, and CH(3) + dimethylcarbene. Neither the translational energy distributions that describe these two channels nor the product branching ratio are consistent with statistical dissociation on the ground state, and instead favor a mechanism taking place on excited state surfaces.  相似文献   

17.
The photodissociation dynamics of allyl chloride at 235 nm producing atomic Cl((2)P(J);J=1/2,3/2) fragments is investigated using a two-dimensional photofragment velocity ion imaging technique. Detection of the Cl((2)P(1/2)) and Cl((2)P(3/2)) products by [2+1] resonance enhanced multiphoton ionization shows that primary C-Cl bond fission of allyl chloride generates 66.8% Cl((2)P(3/2)) and 33.2% Cl((2)P(1/2)). The Cl((2)P(3/2)) fragments evidenced a bimodal translational energy distribution with a relative weight of low kinetic energy Cl((2)P(3/2))/high kinetic energy Cl((2)P(3/2)) of 0.097/0.903. The minor dissociation channel for C-Cl bond fission, producing low kinetic energy chlorine atoms, formed only chlorine atoms in the Cl((2)P(3/2)) spin-orbit state. The dominant C-Cl bond fission channel, attributed to an electronic predissociation that results in high kinetic energy Cl atoms, produced both Cl((2)P(1/2)) and Cl((2)P(3/2)) atomic fragments. The relative branching for this dissociation channel is Cl((2)P(1/2))/[Cl((2)P(1/2))+Cl((2)P(3/2))]=35.5%. The average fraction of available energy imparted into product recoil for the high kinetic energy products was found to be 59%, in qualitative agreement with that predicted by a rigid radical impulsive model. Both the spin-orbit ground and excited chlorine atom angular distributions were close to isotropic. We compare the observed Cl((2)P(1/2))/[Cl((2)P(1/2))+Cl((2)P(3/2))] ratio produced in the electronic predissociation channel of allyl chloride with a prior study of the chlorine atom spin-orbit states produced from HCl photodissociation, concluding that angular momentum recoupling in the exit channel at long interatomic distance determines the chlorine atom spin-orbit branching.  相似文献   

18.
The photodissociation dynamics of fumaryl chloride (ClCO-CH═CH-COCl) has been studied in a supersonic molecular beam around 235 nm using resonance enhanced multiphoton ionization (REMPI) time-of-flight (TOF) technique by detecting the nascent state of the primary chlorine atom. A single laser has been used for excitation of fumaryl chloride and the REMPI detection of chlorine atoms in their spin-orbit states, Cl ((2)P(3/2)) and Cl* ((2)P(1/2)). We have determined the translational energy distribution, the recoil anisotropy parameter, β, and the spin-orbit branching ratio for chlorine atom elimination channels. To obtain these, measured polarization-dependent and state-specific TOF profiles are converted into kinetic energy distributions, using a least-squares fitting method, taking into account the fragment recoil anisotropies, β(i). The TOF profiles for both Cl and Cl* are found to be independent of laser polarization; i.e., β is well characterized by a value of 0.0, within the experimental uncertainties. Two components, namely, the fast and the slow, are observed in the translational energy distribution, P(E(T)), of Cl and Cl* atoms, and assigned to be formed from different potential energy surfaces. The average translational energies for the fast components of the Cl and Cl* channels are 14.9 ± 1.6 and 16.8 ± 1.6 kcal/mol, respectively. Similarly, for the slow components, the average translational energies of the Cl and Cl* channels are 3.4 ± 0.8 and 3.1 ± 0.8 kcal/mol, respectively. The energy partitioning into the translational modes is interpreted with the help of various models, such as impulsive and statistical models. Apart from the chlorine atom elimination channel, molecular hydrogen chloride (HCl) elimination is also observed in the photodissociation process. The HCl product has been detected, using a REMPI scheme in the region of 236-237 nm. The observation of the molecular HCl in the dissociation process highlights the importance of the relaxation process, in which the initially excited parent molecule relaxes to the ground state from where the molecular (HCl) elimination takes place.  相似文献   

19.
The photodissociation dynamics of chloroiodomethane (CH2ICl) at 193 nm has been investigated by employing the photofragment time-of-flight (TOF) mass spectrometric method. Using tunable vacuum ultraviolet undulator synchrotron radiation for photoionization sampling of nascent photofragments, we have identified four primary dissociation product channels: CH2Cl + I(2P(1/2))/I(2P(3/2)), CH2I + Cl(2P(1/2))/Cl(2P(3/2)), CHI + HCl, and CH2 + ICl. The state-selective detection of I(2P(3/2)) and I(2P(1/2)) has allowed the estimation of the branching ratio for I(2P(1/2)):I(2P(3/2)) to be 0.73:0.27. Theoretical calculations based on the time-dependent density-functional theory have been also made to investigate excited electronic potential-energy surfaces, plausible intermediates, and transition structures involved in these photodissociation reactions. The translation energy distributions derived from the TOF measurements suggest that at least two dissociation mechanisms are operative for these photodissociation processes. One involves the direct dissociation from the 2 1A' state initially formed by 193 nm excitation, leading to significant kinetic-energy releases. For the I-atom and Cl-atom elimination channels, the fragment kinetic-energy releases observed via this direct dissociation mechanism are consistent with those predicted by the impulsive dissociation models. Other mechanisms are likely predissociative or statistical in nature from the lower 1 1A' and 1 1A' states and/or the ground X 1A' state populated by internal conversion from the 2 1A' state. On the basis of the maximum kinetic-energy release for the formation of CH2Cl + I(2P(1/2)), we have obtained a value of 53+/-2 kcal/mol for the 0 K bond dissociation energy of I-CH2Cl. The intermediates and transition structures for the CHI + HCl and CH2 + ICl product channels have been also investigated by ab initio quantum calculations at the MP2(full)/6-311G(d) and B3LYP(full)/6-11G(d) levels of theory. The maximum kinetic-energy releases observed for the CHI + HCl and CH2 + ICl channels are consistent with the interpretation that the formation of CHI and CH2 in their ground triplet states is not favored.  相似文献   

20.
A pulse molecular beam of Cl2SO was photodissociated at 248 and 193 nm. The time-of-flight distributions were observed for the photofragments, Cl, ClSO and SO. The primary processes are Cl + ClSO (I), 2Cl + SO (II) and Cl2 + SO (III). At 193 nm the measured translational energy distributions imply a vibrationally excited ClSO fragment in process (I), and a simultaneous dissociation in process (II). The relative quantum yield is φI < φII. At 248 nm a radical process (I) is dominant compared to a molecular process (III).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号