首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Carbohydrates are increasingly used as starting materials for the synthesis of enantiopure ligands. They contain a considerable number of stereocenters, and compounds with all possible configurational combinations are readily available. This tutorial review focuses on ligands obtained by the introduction of phosphorus functionalities (mainly phosphinite, phosphite or phosphine) into a carbohydrate framework. They are classified according to their structural features. In this review, ligands are organised as C1 ligands with a pyranoside or furanoside structure, and C2 ligands. Particular attention is paid to water soluble ligands prepared from carbohydrates. General methods for the preparation of the ligands are presented in order to show how the backbones can be obtained from simple carbohydrates. The catalytic results obtained in commonly studied processes are presented in tables in order to facilitate the comparison between the ligands. The advantages and limitations of the use of ligands based on carbohydrates are discussed.  相似文献   

2.
Abiotic ligands that bind to specific biomolecules have attracted attention as substitutes for biomolecular ligands, such as antibodies and aptamers. Radical polymerization enables the production of robust polymeric ligands from inexpensive functional monomers. However, little has been reported about the production of monodispersed polymeric ligands. Herein, we present homogeneous ligands prepared via radical polymerization that recognize epitope sequences on a target peptide and neutralize the toxicity of the peptide. Taking advantage of controlled radical polymerization and separation, a library of multifunctional oligomers with discrete numbers of functional groups was prepared. Affinity screening revealed that the sequence specificity of the oligomer ligands strongly depended on the number of functional groups. The process reported here will become a general step for the development of abiotic ligands that recognize specific peptide sequences.  相似文献   

3.
Ligand exchange reactions of pyridyl ligand/transition metal complexes are examined in a quadrupole ion trap mass spectrometer to evaluate the ability of multidentate ligands to displace other pyridyl ligands in complexes where the charge is highly delocalized and there is a great degree of ligand repulsions. Partially or fully coordinated transition metal ions in dimer or trimer species involving small mono- or bidentate pyridyl ligands undergo ligand displacement reactions with larger bi- and tridentate pyridyl ligands. Larger ligands with greater chelation abilities, such as 1,10-phenanthroline and 2,2′:6,2″-terpyridine, are often able to simultaneously displace two nonchelating ligands from a partially coordinated metal ion. However, the analogous reactions involving displacement of bidentate chelating ligands from more fully coordinated transition metal ion complexes are nearly quenched. In other cases, mixed-ligand dimer and trimer complexes are observed, indicating step-wise displacement of the initially complexed ligands.  相似文献   

4.
The review considers complexes of phosphorus as central atom with the variously dentate ligands of different topology and type of donor groups. The most stable complexes form the N-donor ligands, which are strong nucleophiles. The P-donor ligands stabilize the lower oxidation state of phosphorus. Only a few examples of complexes is known of the neutral O- and S-donor ligands. The most stable are the chelates with the ligands forming with the phosphorus atom alongside a donor-acceptor bond also a common covalent bond.  相似文献   

5.
Polydentate ligands with benzene-o-dithiolato donor groups are useful building blocks in supramolecular coordination chemistry. The coordination chemistry of bis- and tris(benzene-o-dithiolato) ligands and mixed benzene-o-dithiolato/catecholato ligands is reviewed. These ligands exhibit a versatile coordination chemistry both in solution and in the solid state.  相似文献   

6.
超分子双膦配体是一类新兴起的基于非共价键作用构筑的双膦配体,近年来引起人们的重视.与传统的共价键连接的双膦配体相比,利用非共价相互作用的可逆性和选择性,超分子双膦配体具有合成简便,组合灵活,易于合成超分子配体库,并利用组合化学的方法对催化体系进行优化和筛选等优点.详细综述了近几年发展的基于氢键、配位键、主客体作用和静电作用等弱相互作用的超分子双膦配体,重点讨论了它们的构建方法以及在不对称催化反应中的应用,并对其发展前景进行了展望.  相似文献   

7.
A novel one-pot iridium-catalyzed domino hydroxymethylation of olefins, which relies on using two different ligands at the same time, is reported. DFT computation reveals different activities for the individual hydroformylation and hydrogenation steps in the presence of mono- and bidentate ligands. Whereas bidentate ligands have higher hydrogenation activity, monodentate ligands show higher hydroformylation activity. Accordingly, a catalyst system is introduced that uses dual ligands in the whole domino process. Control experiments show that the overall selectivity is kinetically controlled. Both computation and experiment explain the function of the two optimized ligands during the domino process.  相似文献   

8.
We report a series of arylpalladium complexes of acetamidate, sulfonamidate, and deprotonated oxazolidinone ligands that undergo reductive elimination with rates and yields that depend on the binding mode of the ancillary and amidate ligands. Complexes of the acetamidate ligands containing the bidentate phosphines DPPF and Xantphos as ancillary ligands undergo reductive elimination. The rate and yield were higher from the complex ligated by Xantphos, which contains a larger bite angle. In contrast, the analogous amidate complex containing a single sterically hindered monodentate ligand and a kappa2-bound amidate ligand does not undergo reductive elimination. This trend of faster reductive elimination from complexes containing bidentate ancillary ligands than from a complex with a single monodentate ancillary ligand is unusual and is consistent with an effect of the denticity of the ancillary ligand on the binding mode of the amidate. Complexes of sulfonamidate ligands underwent reductive elimination faster than complexes of acetamidates, and reductive elimination occurred from complexes containing both bidentate and monodentate ancillary ligands. Like reductive elimination from the acetamidate complexes, reductive eliminations from the sulfonamidate complexes were faster when the complexes possessed bidentate Xantphos and kappa1-sulfonamidate ligands.  相似文献   

9.
Asymmetric gold catalysis has been rapidly developed in the past ten years. Breakthroughs have been made by rational design and meticulous selection of chiral ligands. This review summarizes newly developed gold-catalyzed enantioselective organic transformations and recent progress in ligand design (since 2016), organized according to different types of chiral ligands, including bisphosphine ligands, monophosphine ligands, phosphite-derived ligands, and N-heterocyclic carbene ligands for asymmetric gold(I) catalysis as well as heterocyclic carbene ligands and oxazoline ligands for asymmetric gold(III) catalysis.  相似文献   

10.
For a more general implementation of asymmetric catalysis in the production of fine chemicals, the screening for new catalysts and ligands must be dramatically accelerated. This is possible with a high-throughput experimentation (HTE) approach. However, implementation of this technology requires the rapid preparation of libraries of ligands/catalysts and consequently dictates the use of simple ligands that can be readily synthesised in a robot. In this concept article, we describe how the development of new ligands based on monodentate phosphoramidites enabled the development of an integral HTE protocol for asymmetric hydrogenation. This "instant ligand library" protocol makes it possible to synthesise 96 ligands in one day and screen them the next day. Further diversity is possible by using mixtures of monodentate ligands. This concept has already led to an industrial application. Other concepts, still under development, are based on chiral ruthenacycles as new transfer hydrogenation catalysts and the use of enzymes as ligands for transition-metal complexes.  相似文献   

11.
The field of molecular transition metal complexes with redox-active ligands is dominated by compounds with one or two units of the same redox-active ligand; complexes in which different redox-active ligands are bound to the same metal are uncommon. This work reports the first molecular coordination compounds in which redox-active bisguanidine or urea azine (biguanidine) ligands as well as oxolene ligands are bound to the same cobalt atom. The combination of two different redox-active ligands leads to mono- as well as unprecedented dinuclear cobalt complexes, being multiple (four or six) center redox systems with intriguing electronic structures, all exhibiting radical ligands. By changing the redox potential of the ligands through derivatisation, the electronic structure of the complexes could be altered in a rational way.  相似文献   

12.
Four benzoferrocenyl phosphorus chiral ligands were conveniently prepared in good overall yields. These ligands were found to be stable in solid form and in solution. Two of the four ligands were resolved by chiral HPLC. Unlike a reported bis(phosphino-η5-indenyl)iron(II) complex, in which the indenyl ligands undergo ring flipping through an η1-intermediate, these two ligands were found to be configurationally stable in solution and in solid state. The suitability of these ligands for enantioselective catalysis was assessed in studies on allylic alkylation reactions. When the two less sterically hindered ligands were used, excellent chemical yields were obtained, but the other two more sterically hindered ones gave lower yields. When the two enantiopure ligands were used, enantioselectivity of up to 51% ee was observed. These findings suggest that benzoferrocene derivatives may be used as chiral ligands for asymmetric catalysis.  相似文献   

13.
Perylene diimide (PDI) and naphthalene diimides (NDIs) are compounds widely used in supramolecular structures due to their versatile and functional properties. They have high absorptions and photoluminescence capabilities, which make them ideal for electronic transition studies. Reflux method, a widely employed synthetic technique, was utilized to synthesize NDI and PDI derivatives. In this method, the respective amino acids and NTDA (naphthalene-1,4,5,8-tetracarboxylic dianhydride) were combined in acetic acid and the resulting mixture was subjected to reflux. This study centered on a diverse set of NDI and PDI ligands, comprising L-ala-NDI, B-ala-NDI, Gly-NDI, Imi-NDI, Pyr-NDI, L-ala-PDI, B-ala-PDI, Gly-PDI, Imi-PDI, and Pyr-PDI ligands. Crystal structures were obtained for three NDI ligands, while the characterization of all ligands involved several analytical techniques such as NMR, IR, UV, DFT, TD-DFT calculations, and single-crystal x-ray crystallography specifically for the NDI ligands. The investigation focused on studying the electron acceptor/donor behavior of the NDI and PDI ligands, identifying their potential for charge transfer applications. Furthermore, the NLO (nonlinear optical) response of all 10 NDI and PDI ligands was assessed through an analysis involving HOMO-LUMO, TDM, EDDM, NCI, Iso-surface, MEP, natural population, and DOS analysis. This evaluation encompassed the examination of linear polarizability, as well as first and second hyperpolarizability in the context of NLO. The findings of the study revealed that Gly-PDI, Imi-PDI, L-ala-PDI, and B-ala-PDI ligands displayed a higher NLO response compared with the other ligands. These results highlight the potential of these ligands for nonlinear optical applications. The comprehensive characterization and assessment of the NDI and PDI ligands contribute to a deeper understanding of their electron properties, positioning them as promising candidates for charge transfer and nonlinear optical materials.  相似文献   

14.
In nuclear waste treatment processes there is a need for improved ligands for the separation of actinides (An(III)) and lanthanides (Ln(III)). Several research groups are involved in the design and synthesis of new An(III) ligands and in the confinement of these and existing An(III) ligands onto molecular platforms giving multicoordinate ligands. The preorganization of ligands considerably improves the An(III) extraction properties, which are largely dependent on the solubility and rigidity of the platform. This tutorial review summarizes the most important An(III) ligands with emphasis on the preorganization strategy using (macrocyclic) platforms.  相似文献   

15.
Advances in the palladium-catalyzed asymmetric hydrosilylation of 1,3-dienes are presented according to substrate types and chiral monophosphine ligands. Chiral monodentate phosphine ligands with a binaphthyl moiety have been proven to be the most efficient ligands for cyclic 1,3-dienes, and planar chiral ferrocenylmonophosphine ligands with two ferrocenyl moieties for linear 1,3-dienes. The ferrocenylmonophosphine ligands have expanded the substrate scope to 1,3-enynes in the asymmetric hydrosilylation. Palladium-catalyzed asymmetric hydrosilylation of 1,3-dienes and 1,3-enynes leads to the stereoselective synthesis of allylsilanes and allenylsilanes, respectively.  相似文献   

16.
不对称催化氢甲酰化中高效手性配体的进展   总被引:2,自引:0,他引:2  
比较系统地总结了应用于不对称催化氢甲酰化方面各类配体的合成、设计思路及性能,侧重于评述高效配体的最新进展.  相似文献   

17.
The syntheses of three novel chiral 4,4′BOX ligands are described. The three ligands each have a chiral backbone and chiral sidearms, two of which are diastereomeric. These new ligands have been applied as copper complexes to asymmetric cyclopropanation reaction of styrene with ethyldiazoacetate. Enantioselectivities of up to 70% were obtained, which is the highest ee reported from the use of this ligand class in this reaction to date. The multiple stereogenic centres in the ligand resulted in a substantial additive effect and this is discussed along with interpretation of the results for previously described 4,4′BOX ligands, and a major computational study of the multiple reaction channels involved with ligands of this type. The use of complexes of 4,4′BOX ligands, as catalysts, in an allylic alkylation is also reported for the first time and ee’s of >70% have been achieved in this reaction. These ligands were also applied to a Diels–Alder test reaction and again outperformed previous examples of this ligand type.  相似文献   

18.
A well known strategy to prepare high affinity ligands for a biological receptor is to link together low affinity ligands. DCC (dynamic combinatorial chemistry) was used to select bifunctional protein ligands with high affinity relative to the corresponding monofunctional ligands. Thiol to disulfide linkage generated a small dynamic library of bifunctional ligands in the presence of calmodulin, a protein with two independently mobile domains. The binding constant of the bifunctional ligand (disulfide) most amplified by the presence of calmodulin is nearly two orders of magnitude higher than that of the corresponding monofunctional ligand (thiol).  相似文献   

19.
Sulfoxide-alkene hybrids are introduced as a new class of chiral heterodentate ligands for the Hayashi-Miyaura reaction. The synthesis of these ligands was achieved without the use of protecting groups. A chiral resolution was performed via simple column-chromatographic separation of the diastereomeric ligands. Both diastereomers proved to be excellent ligands in Rh-catalyzed 1,4-addition reactions, furnishing chiral products with high enantioselectivities and, remarkably, opposite stereoconfigurations.  相似文献   

20.
A solid-phase procedure has been developed for the synthesis of chiral N-acylethylenediamine ligands. The ligands are obtained in good yield and purity, without the need for chromatography or other purification methods. Several new and previously reported ligands were prepared using this procedure. These compounds were examined as catalysts for the enantioselective addition of alkylzinc reagents to aldehydes. In all cases, the crude ligands from the solid-phase syntheses catalyzed the reactions with similar yields and stereoselectivities when compared to reactions using ligands that had been purified by standard methods. Preliminary studies were also performed with ligands 3a and 3f as catalysts for the addition of alkenylzinc reagents to aldehydes to give chiral allylic alcohols. Ligand 3f was found to catalyze this addition reaction in up to 76% ee.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号