首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We study some non-highest weight modules over an affine Kac–Moody algebra [^(\mathfrak g)]{\hat{\mathfrak g}} at the non-critical level. Roughly speaking, these modules are non-commutative localizations of some non-highest weight “vacuum” modules. Using free field realization, we embed some rings of differential operators in endomorphism rings of our modules. These rings of differential operators act on a localization of the space of coinvariants of any [^(\mathfrak g)]{\hat{\mathfrak g}}-module with respect to a certain level subalgebra. In a particular case this action is identified with the Casimir connection.  相似文献   

2.
We prove a formula for the twining characters of certain Demazure modules, over a Borel subalgebra \mathfrakb\mathfrak{b} of a finite dimensional complex semisimple Lie algebra \mathfrakg\mathfrak{g}. This formula describes the twining character of the Demazure module by the w\omega-Demazure operator associated to an element of the Weyl group that is fixed by the Dynkin diagram automorphism w\omega of \mathfrakg\mathfrak{g}. Our result is a refinement of the twining character formula for the irreducible highest weight \mathfrakg\mathfrak{g}-modules of symmetric dominant integral highest weights, and also of the ordinary Demazure character formula.  相似文献   

3.
We generalize a result of Kostant and Wallach concerning the algebraic integrability of the Gelfand-Zeitlin vector fields to the full set of strongly regular elements in \mathfrakg\mathfrakl \mathfrak{g}\mathfrak{l} (n, ℂ). We use decomposition classes to stratify the strongly regular set by subvarieties XD {X_\mathcal{D}} . We construct an étale cover [^(\mathfrakg)]D {\hat{\mathfrak{g}}}_\mathcal{D} of XD {X_\mathcal{D}} and show that XD {X_\mathcal{D}} and [^(\mathfrakg)]D {\hat{\mathfrak{g}}}_\mathcal{D} are smooth and irreducible. We then use Poisson geometry to lift the Gelfand-Zeitlin vector fields on XD {X_\mathcal{D}} to Hamiltonian vector fields on [^(\mathfrakg)]D {\hat{\mathfrak{g}}}_\mathcal{D} and integrate these vector fields to an action of a connected, commutative algebraic group.  相似文献   

4.
Let ${\mathfrak{g}}Let \mathfrakg{\mathfrak{g}} be a finite dimensional simple Lie algebra over an algebraically closed field \mathbbK\mathbb{K} of characteristic 0. Let \mathfrakg\mathbbZ{\mathfrak{g}}_{{\mathbb{Z}}} be a Chevalley ℤ-form of \mathfrakg{\mathfrak{g}} and \mathfrakg\Bbbk=\mathfrakg\mathbbZ?\mathbbZ\Bbbk{\mathfrak{g}}_{\Bbbk}={\mathfrak{g}}_{{\mathbb{Z}}}\otimes _{{\mathbb{Z}}}\Bbbk, where \Bbbk\Bbbk is the algebraic closure of  \mathbbFp{\mathbb{F}}_{p}. Let G\BbbkG_{\Bbbk} be a simple, simply connected algebraic \Bbbk\Bbbk-group with \operatornameLie(G\Bbbk)=\mathfrakg\Bbbk\operatorname{Lie}(G_{\Bbbk})={\mathfrak{g}}_{\Bbbk}. In this paper, we apply recent results of Rudolf Tange on the fraction field of the centre of the universal enveloping algebra U(\mathfrakg\Bbbk)U({\mathfrak{g}}_{\Bbbk}) to show that if the Gelfand–Kirillov conjecture (from 1966) holds for \mathfrakg{\mathfrak{g}}, then for all p≫0 the field of rational functions \Bbbk (\mathfrakg\Bbbk)\Bbbk ({\mathfrak{g}}_{\Bbbk}) is purely transcendental over its subfield \Bbbk(\mathfrakg\Bbbk)G\Bbbk\Bbbk({\mathfrak{g}}_{\Bbbk})^{G_{\Bbbk}}. Very recently, it was proved by Colliot-Thélène, Kunyavskiĭ, Popov, and Reichstein that the field of rational functions \mathbbK(\mathfrakg){\mathbb{K}}({\mathfrak{g}}) is not purely transcendental over its subfield \mathbbK(\mathfrakg)\mathfrakg{\mathbb{K}}({\mathfrak{g}})^{\mathfrak{g}} if \mathfrakg{\mathfrak{g}} is of type B n , n≥3, D n , n≥4, E6, E7, E8 or F4. We prove a modular version of this result (valid for p≫0) and use it to show that, in characteristic 0, the Gelfand–Kirillov conjecture fails for the simple Lie algebras of the above types. In other words, if \mathfrakg{\mathfrak{g}} is of type B n , n≥3, D n , n≥4, E6, E7, E8 or F4, then the Lie field of \mathfrakg{\mathfrak{g}} is more complicated than expected.  相似文献   

5.
Let \mathfraka \mathfrak{a} be an algebraic Lie subalgebra of a simple Lie algebra \mathfrakg \mathfrak{g} with index \mathfraka \mathfrak{a}  ≤ rank \mathfrakg \mathfrak{g} . Let Y( \mathfraka ) Y\left( \mathfrak{a} \right) denote the algebra of \mathfraka \mathfrak{a} invariant polynomial functions on \mathfraka* {\mathfrak{a}^*} . An algebraic slice for \mathfraka \mathfrak{a} is an affine subspace η + V with h ? \mathfraka* \eta \in {\mathfrak{a}^*} and V ì \mathfraka* V \subset {\mathfrak{a}^*} subspace of dimension index \mathfraka \mathfrak{a} such that restriction of function induces an isomorphism of Y( \mathfraka ) Y\left( \mathfrak{a} \right) onto the algebra R[η + V] of regular functions on η + V. Slices have been obtained in a number of cases through the construction of an adapted pair (h, η) in which h ? \mathfraka h \in \mathfrak{a} is ad-semisimple, η is a regular element of \mathfraka* {\mathfrak{a}^*} which is an eigenvector for h of eigenvalue minus one and V is an h stable complement to ( \textad  \mathfraka )h \left( {{\text{ad}}\;\mathfrak{a}} \right)\eta in \mathfraka* {\mathfrak{a}^*} . The classical case is for \mathfrakg \mathfrak{g} semisimple [16], [17]. Yet rather recently many other cases have been provided; for example, if \mathfrakg \mathfrak{g} is of type A and \mathfraka \mathfrak{a} is a “truncated biparabolic” [12] or a centralizer [13]. In some of these cases (in particular when the biparabolic is a Borel subalgebra) it was found [13], [14], that η could be taken to be the restriction of a regular nilpotent element in \mathfrakg \mathfrak{g} . Moreover, this calculation suggested [13] how to construct slices outside type A when no adapted pair exists. This article makes a first step in taking these ideas further. Specifically, let \mathfraka \mathfrak{a} be a truncated biparabolic of index one. (This only arises if \mathfrakg \mathfrak{g} is of type A and \mathfraka \mathfrak{a} is the derived algebra of a parabolic subalgebra whose Levi factor has just two blocks whose sizes are coprime.) In this case it is shown that the second member of an adapted pair (h, η) for \mathfraka \mathfrak{a} is the restriction of a particularly carefully chosen regular nilpotent element of \mathfrakg \mathfrak{g} . A by-product of our analysis is the construction of a map from the set of pairs of coprime integers to the set of all finite ordered sequences of ±1.  相似文献   

6.
Let \mathfrakg \mathfrak{g} be a reductive Lie algebra and \mathfrakk ì \mathfrakg \mathfrak{k} \subset \mathfrak{g} be a reductive in \mathfrakg \mathfrak{g} subalgebra. A ( \mathfrakg,\mathfrakk \mathfrak{g},\mathfrak{k} )-module M is a \mathfrakg \mathfrak{g} -module for which any element mM is contained in a finite-dimensional \mathfrakk \mathfrak{k} -submodule of M. We say that a ( \mathfrakg,\mathfrakk \mathfrak{g},\mathfrak{k} )-module M is bounded if there exists a constant C M such that the Jordan-H?lder multiplicities of any simple finite-dimensional \mathfrakk \mathfrak{k} -module in every finite-dimensional \mathfrakk \mathfrak{k} -submodule of M are bounded by C M . In the present paper we describe explicitly all reductive in \mathfraks\mathfrakln \mathfrak{s}{\mathfrak{l}_n} subalgebras \mathfrakk \mathfrak{k} which admit a bounded simple infinite-dimensional ( \mathfraks\mathfrakln,\mathfrakk \mathfrak{s}{\mathfrak{l}_n},\mathfrak{k} )-module. Our technique is based on symplectic geometry and the notion of spherical variety. We also characterize the irreducible components of the associated varieties of simple bounded ( \mathfrakg,\mathfrakk \mathfrak{g},\mathfrak{k} )-modules.  相似文献   

7.
8.
Let \mathfraka \mathfrak{a} be a finite-dimensional Lie algebra and Y( \mathfraka ) Y\left( \mathfrak{a} \right) the \mathfraka \mathfrak{a} invariant subalgebra of its symmetric algebra S( \mathfraka ) S\left( \mathfrak{a} \right) under adjoint action. Recently there has been considerable interest in studying situations when Y( \mathfraka ) Y\left( \mathfrak{a} \right) may be polynomial on index \mathfraka \mathfrak{a} generators, for example if \mathfraka \mathfrak{a} is a biparabolic or a centralizer \mathfrakgx {\mathfrak{g}^x} in a semisimple Lie algebra \mathfrakg \mathfrak{g} .  相似文献   

9.
10.
The cohomology H \mathfrakg\mathfrak{g} ) of the tangent Lie algebra \mathfrakg\mathfrak{g} of the group G with coefficients in the one-dimensional representation \mathfrakg\mathfrak{g} \mathbbK\mathbb{K} defined by [(W)\tilde] \mathfrakg \tilde \Omega _\mathfrak{g} of H 1(G/ \mathfrakg\mathfrak{g} .  相似文献   

11.
For any complex 6-dimensional nilpotent Lie algebra \mathfrakg,\mathfrak{g}, we compute the strain of all indecomposable 7-dimensional nilpotent Lie algebras which contain \mathfrakg\mathfrak{g} by the adjoining a derivation method. We get a new determination of all 7-dimensional complex nilpotent Lie algebras, allowing to check earlier results (some contain errors), along with a cross table intertwining nilpotent 6- and 7-dimensional Lie algebras.  相似文献   

12.
By using the concept of weight graph associated to nonsplit complex nilpotent Lie algebras \mathfrakg\mathfrak{g}, we find necessary and sufficient conditions for a semidirect product \mathfrakg?? Ti\mathfrak{g}\overrightarrow{\oplus } T_{i} to be two-step solvable, where $T_{i}TT over \mathfrakg\mathfrak{g} which induces a decomposition of \mathfrakg\mathfrak{g} into one-dimensional weight spaces without zero weights. In particular we show that the semidirect product of such a Lie algebra with a maximal torus of derivations cannot be itself two-step solvable. We also obtain some applications to rigid Lie algebras, as a geometrical proof of the nonexistence of two-step nonsplit solvable rigid Lie algebras in dimensions n\geqslant 3n\geqslant 3.  相似文献   

13.
We consider a relationship between two sets of extensions of a finite finitely additive measure μ defined on an algebra \mathfrakB \mathfrak{B} of sets to a broader algebra \mathfrakA \mathfrak{A} . These sets are the set ex S μ of all extreme extensions of the measure μ and the set H μ of all extensions defined as l(A) = [^(m)]( h(A) ),   A ? \mathfrakA \lambda (A) = \hat{\mu }\left( {h(A)} \right),\,\,\,A \in \mathfrak{A} , where [^(m)] \hat{\mu } is a quotient measure on the algebra \mathfrakB
/ m {{\mathfrak{B}} \left/ {\mu } \right.} of the classes of μ-equivalence and h:\mathfrakA ? \mathfrakB / m h:\mathfrak{A} \to {{\mathfrak{B}} \left/ {\mu } \right.} is a homomorphism extending the canonical homomorphism \mathfrakB \mathfrak{B} to \mathfrakB / m {{\mathfrak{B}} \left/ {\mu } \right.} . We study the properties of extensions from H μ and present necessary and sufficient conditions for the existence of these extensions, as well as the conditions under which the sets ex S μ and H μ coincide.  相似文献   

14.
Possible irreducible holonomy algebras \mathfrakg ì \mathfrakosp(p, q|2m){\mathfrak{g}\subset\mathfrak{osp}(p, q|2m)} of Riemannian supermanifolds under the assumption that \mathfrakg{\mathfrak{g}} is a direct sum of simple Lie superalgebras of classical type and possibly of a 1-dimensional center are classified. This generalizes the classical result of Marcel Berger about the classification of irreducible holonomy algebras of pseudo-Riemannian manifolds.  相似文献   

15.
Let e be a nilpotent element of a complex simple Lie algebra $ \mathfrak{g} Let e be a nilpotent element of a complex simple Lie algebra \mathfrakg \mathfrak{g} . The weighted Dynkin diagram of e, D(e) \mathcal{D}(e) , is said to be divisible if D(e)
/ 2 {{{\mathcal{D}(e)}} \left/ {2} \right.} is again a weighted Dynkin diagram. The corresponding pair of nilpotent orbits is said to be friendly. In this paper we classify the friendly pairs and describe some of their properties. Any subalgebra \mathfraks\mathfrakl3 \mathfrak{s}{\mathfrak{l}_3} in \mathfrakg \mathfrak{g} gives rise to a friendly pair; such pairs are called A2-pairs. If Gx is the lower orbit in an A2-pair, then x ? [ \mathfrakgx,\mathfrakgx ] x \in \left[ {{\mathfrak{g}^x},{\mathfrak{g}^x}} \right] , i.e., x is reachable. We also show that \mathfrakgx {\mathfrak{g}^x} has other interesting properties. Let \mathfrakgx = ?i \geqslant 0\mathfrakgx(i) {\mathfrak{g}^x} = { \oplus_{i \geqslant 0}}{\mathfrak{g}^x}(i) be the \mathbbZ - \textgrading \mathbb{Z} - {\text{grading}} determined by a characteristic of x. We prove that \mathfrakgx {\mathfrak{g}^x} is generated by the Levi subalgebra \mathfrakgx(0) {\mathfrak{g}^x}(0) and two elements of \mathfrakgx(1) {\mathfrak{g}^x}(1) . In particular, the nilpotent radical of \mathfrakgx {\mathfrak{g}^x} is generated by the subspace \mathfrakgx(1) {\mathfrak{g}^x}(1) .  相似文献   

16.
Let U( \mathfrakg,e ) U\left( {\mathfrak{g},e} \right) be the finite W-algebra associated with a nilpotent element e in a complex simple Lie algebra \mathfrakg = \textLie(G) \mathfrak{g} = {\text{Lie}}(G) and let I be a primitive ideal of the enveloping algebra U( \mathfrakg ) U\left( \mathfrak{g} \right) whose associated variety equals the Zariski closure of the nilpotent orbit (Ad G) e. Then it is known that I = \textAn\textnU( \mathfrakg )( Qe ?U( \mathfrakg,e )V ) I = {\text{An}}{{\text{n}}_{U\left( \mathfrak{g} \right)}}\left( {{Q_e}{ \otimes_{U\left( {\mathfrak{g},e} \right)}}V} \right) for some finite dimensional irreducible U( \mathfrakg,e ) U\left( {\mathfrak{g},e} \right) -module V, where Q e stands for the generalised Gelfand–Graev \mathfrakg \mathfrak{g} -module associated with e. The main goal of this paper is to prove that the Goldie rank of the primitive quotient U( \mathfrakg )
/ I {{{U\left( \mathfrak{g} \right)}} \left/ {I} \right.} always divides dim V. For \mathfrakg = \mathfraks\mathfrakln \mathfrak{g} = \mathfrak{s}{\mathfrak{l}_n} , we use a theorem of Joseph on Goldie fields of primitive quotients of U( \mathfrakg ) U\left( \mathfrak{g} \right) to establish the equality \textrk( U( \mathfrakg ) / I ) = dimV {\text{rk}}\left( {{{{U\left( \mathfrak{g} \right)}} \left/ {I} \right.}} \right) = \dim V . We show that this equality continues to hold for \mathfrakg \ncong \mathfraks\mathfrakln \mathfrak{g} \ncong \mathfrak{s}{\mathfrak{l}_n} provided that the Goldie field of U( \mathfrakg ) / I {{{U\left( \mathfrak{g} \right)}} \left/ {I} \right.} is isomorphic to a Weyl skew-field and use this result to disprove Joseph’s version of the Gelfand–Kirillov conjecture formulated in the mid-1970s.  相似文献   

17.
A construction due to Sym and Bobenko recovers constant mean curvature surfaces in euclidean 3-space from their harmonic Gauss maps. We generalize this construction to higher dimensions and codimensions replacing the surface by a complex manifold and the sphere (the target space of the Gauss map) by a Kähler symmetric space of compact type with its standard embedding into the Lie algebra ${\mathfrak{g}}A construction due to Sym and Bobenko recovers constant mean curvature surfaces in euclidean 3-space from their harmonic Gauss maps. We generalize this construction to higher dimensions and codimensions replacing the surface by a complex manifold and the sphere (the target space of the Gauss map) by a K?hler symmetric space of compact type with its standard embedding into the Lie algebra \mathfrakg{\mathfrak{g}} of its transvection group. Thus we obtain a new class of immersed K?hler submanifolds of \mathfrakg{\mathfrak{g}} and we derive their properties.  相似文献   

18.
19.
We consider the Lie algebra that corresponds to the Lie pseudogroup of all conformal transformations on the plane. This conformal Lie algebra is canonically represented as the Lie algebra of holomorphic vector fields in ℝ2≃ℂ. We describe all representations of \mathfrakg\mathfrak{g} via vector fields in J 02=ℝ3(x,y,u), which project to the canonical representation, and find their algebra of scalar differential invariants.  相似文献   

20.
Let G be a connected Lie group, with Lie algebra . In 1977, Duflo constructed a homomorphism of -modules , which restricts to an algebra isomorphism on invariants. Kashiwara and Vergne (1978) proposed a conjecture on the Campbell-Hausdorff series, which (among other things) extends the Duflo theorem to germs of bi-invariant distributions on the Lie group G. The main results of the present paper are as follows. (1) Using a recent result of Torossian (2002), we establish the Kashiwara–Vergne conjecture for any Lie group G. (2) We give a reformulation of the Kashiwara–Vergne property in terms of Lie algebra cohomology. As a direct corollary, one obtains the algebra isomorphism , as well as a more general statement for distributions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号