首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The heat capacities of fullerene-containing poly(methyl methacrylate-co-allyl methacrylate) and the C60-free copolymer of the same composition are studied in the temperature interval 8 to 350–450 K via the methods of high-accuracy adiabatic and differential scanning calorimetry. Thermodynamic characteristics of glass transition, standard thermodynamic functions, and temperature intervals of the thermal stability of the samples are estimated. The fractal dimension is calculated, and conclusions about the topological structure of the copolymers are proposed. The effect of C60 on the thermodynamic characteristics of the copolymer is studied.  相似文献   

2.
A reactive amino-ended toughener was blended with different commercial epoxy resins namely, diglycidyl ether of bisphenol A, diglycidyl ether of bisphenol F, diglycidyl p-aminophenol and 1,5-naphthalenediamine as curing agent. The toughener was an aromatic amino-ended copolyethersulphone (coPES):poly(ether-sulphone)–poly(etherether-sulphone). The effect of the toughener on the thermal decomposition and char oxidation behaviour of the epoxy resins was studied by the simultaneous differential thermal analysis and thermogravimetric techniques. The glass transition temperature (T g) as well as characteristic parameters of decomposition, initial decomposition temperature (T i) and temperature at maximum degradation rate (T m), in both inert and oxidative environments, were determined in order to verify the influence of toughener on the thermal degradation of the different epoxy systems. It was observed that the presence of coPES maintains the high level thermal stability of the resin and that the glass transition temperature increase with the toughener percentage.  相似文献   

3.
A rare case of thermodynamic miscibility has been demonstrated in the amorphous state (quenched glass as well as molten state) of a ternary blend system formed by poly(ether imide) and semicrystalline poly(ethylene terephthalate) and poly-(butylene terephthalate). A single glass transition temperature (Tg) in the ternary blends was observed using differential scanning calorimetry and dynamic mechanical analysis.  相似文献   

4.
Silicate-phosphate glasses of SiO2–P2O5–K2O–MgO–CaO system containing manganese cations were investigated to obtain information about the influence of manganese ions on the thermal behavior of such glasses. Amorphous state of glasses and the course of phase transformation and crystallization taking place during their heating were investigated by DSC, XRD, and FTIR methods. It was shown that an increasing content of manganese replacing calcium and magnesium in the structure of analyzed glasses causes decrease of glass transition temperature (T g) and heat capacity change (Δc p) accompanying the glass transformation. Simultaneously, thermal stability of the glasses increased. Products of multistage crystallization of glasses containing up to 8 mol% of MnO2 were: marokite (CaMn2O4), phosphate of Ca9MgK(PO4)7 type, and diopside (CaMgSi2O6). Product of crystallization of glasses containing higher amount of manganese was braunite (Mn7O8SiO4). This was accompanied by change of structure of magnesium calcium silicates from diopside-type structure to akermanite-type silicates (Ca2MgSi2O7). The data interpretation was based on bonds and chemical interactions of the individual components forming the glass structure.  相似文献   

5.
In this study, the thermal and mechanical properties of biodegradable poly(L ‐lactic acid) (PLA) were improved by reacting with 4,4‐methylene diphenyl diisocyanate (MDI). The resulting PLA samples were characterized with Fourier transformation infrared spectrometer (FT‐IR). The glass transition (Tg) and decomposing (Td) temperature of the resulting products were measured using differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA), respectively. The tensile properties were also measured with a tensile tester. The results show that when the molar ratio of ? NCO to ? OH was 2:1, the Tg value can be increased to 64°C from the original 55°C, and the tensile strength increased from 4.9 to 5.8 MPa. This demonstrated that by reacting PLA with MDI at an appropriate portion, both the thermal and mechanical performance of PLA can be increased. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

6.
Recently, multicomponent glass forming alloys have been found which exhibit extraordinary glass forming ability and cooling rates of less than 100 K/s are sufficient to suppress nucleation of crystalline phases and consequently bulk metallic glass (BMG) is formed. The undercooled melts of BMG systems have high thermal stability in the undercooled region. Therefore, it is interesting to study the thermodynamics of such materials. This article investigates the thermodynamic behavior of a BMG system namely Zr52.5Cu17.9Ni14.6Al10Ti5 by estimating the Gibbs free energy difference ΔG, entropy difference ΔS, enthalpy difference ΔH between the undercooled liquid and corresponding equilibrium crystalline solid phase, in the entire temperature range from T m to T K. Glass forming ability (GFA) of this system has been investigated through various GFA parameters indicating the degree of ease of glass formation.  相似文献   

7.
Volumetric thermal analysis of semicrystalline poly(ethylene terephthalate), PET, with different content of crystalline phase was carried out using mercury-in-glass dilatometry. The effect of crystals on the thermal properties of amorphous phase (glass transition temperature, T g, thermal expansion coefficients, α) were determined. At cold-crystallization (106°C, up to 4 h), crystalline content of 2.4–25.3 vol.% was achieved. Increasing content of crystalline phase broadens the glass transition region and increases T g. The change of thermal expansion coefficient during glass transition is lower than that predicted by the two-phase model, which indicates the presence of a third fraction — rigid amorphous fraction (RAF), whose content steadily increases during crystallization. However, its relative portion (specific RAF) is significantly reduced. Further significant decrease in specific RAF appears after annealing at a higher temperature.  相似文献   

8.

This study is based on the assumption that the change in the texture of hazelnut, induced by water sorption or desorption, can be derived from the glass transition. No previous study has investigated the glass transition properties of hazelnuts. This study aimed to investigate the effect of water content on the glass transition and textural properties of a roasted hazelnut product. Water content of the sample was adjusted in various relative humidity conditions, and the mechanical glass transition temperature Tg was investigated using thermal rheological analysis (TRA), a type of thermomechanical analysis. The TRA curve exhibited a clear force drop induced by the glass transition, and mechanical Tg of the samples was determined. Water plasticizing effect caused mechanical Tg to decrease as the water content increased. The reduction in Tg was analyzed using the Gordon–Taylor equation and linear equation, and the critical water contents (water content at mechanical Tg?=?25 °C) were obtained. The fracturing properties of the hazelnut changed from brittle to ductile at the critical water contents. This suggested that the change in the texture of hazelnut can be characterized by the glass transition.

  相似文献   

9.
Poly(lactic acid)/organo-montmorillonite nanocomposites were prepared by melt intercalation technique. Maleic anhydride-grafted ethylene propylene rubber (EPMgMA) was added into the PLA/OMMT in order to improve the compatibility and toughness of the nanocomposites. The samples were prepared by single screw extrusion followed by compression molding. The effect of OMMT and EPMgMA on the thermal properties of PLA was studied. The thermal properties of the PLA/OMMT nanocomposites have been investigated by using differential scanning calorimeter (DSC) and thermo-gravimetry analyzer (TG). The melting temperature (T m), glass transition temperature (T g), crystallization temperature (T c), degree of crystallinity (χc), and thermal stability of the PLA/OMMT nanocomposites have been studied. It was found that the thermal properties of PLA were greatly influenced by the addition of OMMT and EPMgMA.  相似文献   

10.
The thermal expansion of epoxy-resin (Epikote 828)/particle composites has been measured in the range 77 to 450 K. The fillers used were Cu spheres (seven sizes from 5 to 150 μm diameter) and glass ballotini spheres (three sizes from 3.5 to 200 μm diameter). The volume concentrations used were 0.3 and 0.5 for Cu and 0.3 for glass. The experiments show that the addition of filler raises the glass transition temperature Tg, especially for fine particles. Below the normal value of Tg the thermal expansion is independent of particle size while above Tg the expansion is considerably smaller for samples containing the smaller particles. The effect is more pronounced for Cu than for glass filler. In addition a rapid heating rate reduces the expansion for specimens containing smaller particles but it does not effect the expansion for those containing large particles. The results, which are discussed in the light of the work of other authors, suggest that the addition of particles increases Tg by changing the nature of the polymer not only immediately at the particle surface but also for a considerable distance into the polymer itself. This probably occurs because the epoxy bonds strongly to the particles and this inhibits segmental rotations of the polymer even at considerable distances from the particle surface.  相似文献   

11.
The high sensitivity of the thermally stimulated current, thermal sampling (TS) method is emphasized in a study of the breadth of the glass transition in several liquid-crystalline polymers (LCPs). Differential scanning calorimetry (DSC) was performed on all samples to further quantify the glass transition regions. For “random” copolyester LCPs with widely varying degrees of crystallinity, including highly amorphous samples, very broad glass tran-sition regions were observed. One semicrystalline alternating copolyester and a series of semicrystalline azomethine LCPs were studied as examples of structurally regular polymers. These exhibited relatively sharp glass transitions more comparable to ordinary isotropic amorphous or semicrystalline polymers. The broad glass transitions in the random copolyesters are attributed to structural heterogeneity of the chains. In one example of a moderate-crystallinity random copolyester LCP (Vectra), glass transitions ranging up to ca. 150°C in breadth were determined by the thermal sampling (TS) method and DSC. In other lower crystallinity copolyester LCPs, the main glass transition temperature as determined by DSC was comparable to that determined by TSC although cooperative relaxations of a minor fraction of the overall relaxing species were detected well below the main Tg, by the TS method and not by DSC. Rapid quenches from the isotropic melt to an isotropic glass were possible with one LCP. The anisotropic and isotropic glassy states for this LCP were found to have the same breadth of the glass transition as was determined by the TS method, although TSC and DSC show that Tg is shifted downward by ca. 15°C in the anisotropic glass as compared to the isotropic glass. © 1993 John Wiley & Sons, Inc.  相似文献   

12.
Quantitative thermal analysis was carried out for poly-(pivalolactone) (PPVL), including heat capacity determinations from 140 to 550 K. The experimental Cp below the glass transition temperature was fitted to an approximate vibrational spectrum and the ATHAS computation scheme was used to compute the “vibration only” heat capacities from 0.1 to 1000 K. The liquid Cp was derived from an empirical addition scheme and found to agree with the experimental Cp with an RMS of ±2.8% from 240 K to 550 K. A glass transition, Tg, could be detected at 260 K, and the change in heat capacity for 100% amorphous PPVL was calculated to be 38.8 J/(K mol). Above Tg, semicrystalline samples seem to show a rigid amorphous fraction that does not contribute to the increase in heat capacity at Tg. Using the ATHAS recommended heat capacities, the various thermodynamic functions (enthalpy, entropy, and Gibbs function) were derived. The residual entropy at 0 K for the amorphous PPVL was calculated to be 5.2 J/(K mol) per mobile bead, and was comparable to that obtained for a series of linear, aliphatic polyesters analyzed earlier.  相似文献   

13.
TlSbSe2 monocrystals were grown using the modified Bridgman–Stockbarger method and were characterized by transmission electron microscopy (TEM) and X-ray diffraction (XRD). Reflectivity spectra have been registered in the range 50 to 4000 cm–1 for E parallel to a and E parallel to b polarizations, on the cleavage plane. A remarkable anisotropy at two directions was verified. With regard to previous observations, additional peaks were discriminated and the fundamental phonon parameters were determined using classical dispersion relations. The material presents a complex phase transformation – with two thermal effects – that was examined using differential scanning calorimetry (DSC). Non-isothermal measurements, at different heating and cooling rates (β), were used to study the thermal phenomena. The main effect is attributed to a structural displacement and the second one to a cation exchange procedure. The phase transformation temperature depends strongly on the cooling rate and the peaks are shifted by 30 K with the increase of this rate, on the contrary to the increase of the heating rate that has a smaller effect. Phenomena related with the influence of the previous, repeated heating and cooling cycles on the transformation are also examined and analytically discussed.  相似文献   

14.
A chromatographic technique is described where the stationary phase is a layer of a very high molecular polystyrene fraction (M = 107) on glass beads (ballotines). The mobile phase is cyclohexane passing the column at a constant temperature below the theta-temperature. A polystyrene sample of sufficiently low molecular weight (M ≤ 106) injected as a small plug at the top of the column is fractionated because the distribution between the mobile and the stationary phase depends on the molecular weight. Since the large molecules preferentially remain in the stationary phase, the smaller molecules leave the column first. The fractionation effect is inverse to that found in GPC experiments. The separation efficiency is rather good and can be described by a simple thermodynamic theory.  相似文献   

15.
The thermal expansion coefficients of glass fiber–polymer composites were calculated applying the solid cylindrical model taking into account the interaction effects among the glass fibers. The stress and displacement in the composite model were determined as functions of the thermal stress. It was found theoretically that the deviation of the thermal expansion coefficient from the linear mixture relationship based on volume additivity appeared at around Tg + 20 K upon cooling. The thermal expansion coefficient of the composite was also found to be markedly dependent on the dispersion state of the glass fibers. An expression for the difference in the Tg of the matrix resin in the composite from that in the unloaded resin was obtained on the assumption that the volume change of the matrix resin caused by mixing was compensated by free volume expansion. The experimental results obtained by differential scanning calorimetry (DSC) measurements were found to agree well with the theoretically predicted ones.  相似文献   

16.
The heat capacity of poly(vinyl methyl ether) (PVME) has been measured using adiabatic calorimetry and temperature‐modulated differential scanning calorimetry (TMDSC). The heat capacity of the solid and liquid states of amorphous PVME is reported from 5 to 360 K. The amorphous PVME has a glass transition at 248 K (?25 °C). Below the glass transition, the low‐temperature, experimental heat capacity of solid PVME is linked to the vibrational molecular motion. It can be approximated by a group vibration spectrum and a skeletal vibration spectrum. The skeletal vibrations were described by a general Tarasov equation with three Debye temperatures Θ1 = 647 K, Θ2 = Θ3 = 70 K, and nine skeletal modes. The calculated and experimental heat capacities agree to better than ±1.8% in the temperature range from 5 to 200 K. The experimental heat capacity of the liquid rubbery state of PVME is represented by Cp(liquid) = 72.36 + 0.136 T in J K?1 mol?1 and compared to estimated results from contributions of the same constituent groups of other polymers using the Advanced Thermal AnalysiS (ATHAS) Data Bank. The calculated solid and liquid heat capacities serve as baselines for the quantitative thermal analysis of amorphous PVME with different thermal histories. Also, knowing Cp of the solid and liquid, the integral thermodynamic functions of enthalpy, entropy, and free enthalpy of glassy and amorphous PVME are calculated with help of estimated parameters for the crystal. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 2141–2153, 2005  相似文献   

17.
Abstract

Glasses of the 45P2O5-(40-x)CaO-15Na2O-xZnO system with increasing zinc oxide (ZnO) concentrations within the ranges of 3 ≤ x ≤ 12 mol% were obtained by employing the melt-quench technique. ZnO inclusions in the phosphate glass network lead to increases in its density and, conversely, a decrease in its molar volume. On the basis of the obtained thermal analysis data, the glasses underwent thermal treatment, which helped to derive their glass ceramic equivalents. The evaluations of structural and elastic properties of glasses before and after thermal treatments were made using X-ray diffraction (XRD) studies and ultrasonic nondestructive testing. The differential thermal analysis data show the reduction in the crystallization tendency and increase in thermal properties, such as crystallization temperature (T P), thermal stability

(T cT g) (where Tc is crystallization onset temperature and T g is glass transition temperature), thermal stability parameter (S), and degree of glassification (D g) of phosphate glasses against the progressive additions of ZnO. The XRD of glass ceramics confirmed the dominance of metaphosphate, pyrophosphate, and ZnO-related crystalline features. The measured elastic moduli, such as longitudinal (L), shear (G), Young's (Y), and bulk (K), and Vicker's microhardness values increased in both glass and glass ceramics with an increase in ZnO incorporation.  相似文献   

18.
19.
The glass transition temperature of thermosets is determined by alternating differential scanning calorimetry (ADSC), which is a temperature modulated DSC technique. The different values of the glass transition obtained from heat flow measurements (total and reversible) and heat capacity (modulus of the complex heat capacity) are analysed and compared with the values obtained by conventional DSC. The effect of the sample mass on the values of Tg, heat capacity and phase angle has been analysed. The effect of the thermal contact between sample and pan has been studied using samples cured directly inside the pan and disc-shaped samples of different thickness. The results obtained for the thermal properties and the phase angle are compared and analysed. The modulus of the complex heat capacity enables the determination of the dynamic glass transition, Tg, which is frequency dependent. The apparent activation energy ofthe relaxation process associated with the glass transition has been evaluated from the dependence of Tg on the period of the modulation.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

20.
The aim of this work is to discuss the thermodynamic properties, obtained by differential scanning calorimetry (DSC), of the thermal transition of proteins and nucleic acids and to analyze these data using statistical thermodynamic relations. The denaturation of the ordered, specific structures of biological macromolecules is a cooperative process and in many cases the macromolecules undergo a two-state transition. Differential scanning calorimetry, giving direct thermodynamic information, has proved to be very useful in clarifying the energetics of macromolecule transitions and in characterizing their thermal stability. Here, various examples are discussed: i) the equilibrium thermal denaturation of ribonuclease A, a model for the use of DSC by following the temperature-unfolding of the proteins, a monomolecular transition; ii) the equilibrium thermal dissociation of a DNA double helix in two strands, an example of how DSC is used to follow a bimolecular process; iii) an example of the use of DSC for studying the melting of unimolecular and tetramolecular DNA quadruple-helices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号