首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
We have found the first well-characterized coordination of guanidine with Zn(2+) in a 1:1 complex (ZnL(1)) with cyclen (= 1,4,7,10-tetraazacyclododecane) functionalized with guanidinylethyl group (L(1) = (2-guanidinyl)ethyl-cyclen). The X-ray structure analysis of the 1:1 complex crystallized at pH 7.5 revealed an apical coordination of the pendant guanidinyl group to Zn(2+) ion in ZnL(1). By potentiometrtic pH titration, initial formation of a 1:1 Zn(L(1).H(+)) complex was indicated, where only the cyclen N's bind to Zn(2+) with the complexation constant, log K(s) (K(s) = [Zn(L(1).H(+))]/[Zn(2+)][L(1).H(+)] (M(-1))), being 12.4 +/- 0.1. Facile deprotonation of the guanidinium pendant in the Zn(L(1).H(+)) occurred with a pK(a) value of 5.9 +/- 0.1 at 25 degrees C with I = 0.1 (NaNO(3)) to yield the guanidine-coordinating complex ZnL(1). 4-Nitrophenyl phosphate dianion (NPP(2-)) interacted with ZnL(1) through a new Zn(2+)-phosphate coordination, as indicated by (31)P NMR titration and potentiometric pH titration. An apparent complexation constant for this new species, log K(app)(Zn(L(1).H(+))-NPP), was 4.0 +/- 0.1, which is larger than the log K(app)(ZnL(2)-NPP) value of 3.1 for the 1:1 complex of Zn(2+)-cyclen (ZnL(2)) with NPP at the common pH 5.6. The interaction of ZnL(1) with a phosphate dianion was proven by the X-ray crystal structure analysis of the 1:1 ZnL(1)-PP(2-) complex (PP(2-) is a dianion of phenyl phosphate) obtained from an aqueous solution at pH 6.5. At higher pH, the pendant guanidinium cation is deprotonated to displace the phosphate to yield the Zn(2+)-guanidine bond.  相似文献   

2.
This paper introduces a simple, rapid, and sensitive procedure for the analysis of phosphorylated compounds (ROPO(3) (2-)) by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS). The method is based on a characteristic mass shift and a total-charge change (from -2 to +1) of the phosphate residue due to complexation of ROPO(3) (2-) with a dinuclear zinc(II) complex (1,3-bis[bis(2-pyridinylmethyl)amino]-2-propanolato dizinc(II) complex, Zn(2)L(3+)) in aqueous solution at physiological pH. Furthermore, the use of single zinc-isotope derivatives ((64)Zn(2)L(3+) and (68)Zn(2)L(3+)) enables improvement of the sensitivity and accuracy of the analysis.  相似文献   

3.
The kinetics of cyclization of 2-hydroxypropyl p-nitrophenyl phosphate (1) promoted by two mononuclear Zn(II) catalytic complexes of bis(2-pyridylmethyl)benzylamine (4) and bis(2-methyl 6-pyridylmethyl)benzylamine (5) in methanol were studied under (s)(s)pH-controlled conditions (where (s)(s)pH refers to [H(+)] activity in methanol). Potentiometric titrations of the ligands in the absence and presence of Zn(2+) and a non-reactive model for 1 (2-hydroxylpropyl isopropyl phosphate (HPIPP, 6)) indicate that the phosphate is bound tightly to the 4:Zn(II) and 5:Zn(II) complexes as L:Zn(II):6(-), and that each of these undergoes an additional ionization to produce L:Zn(II):6(-):((-)OCH(3)) or a bound deprotonated form of the phosphate, L:Zn(II):6(2-). Kinetic studies as a function of [L:Zn(II)] indicate that the rate is linear in [L:Zn(II)] at concentrations well above those required for complete binding of the substrate. Plots of the second order rate constants (defined as the gradient of the rate constant vs. [complex] plot) vs. (s)(s)pH in methanol are bell-shaped with rate maxima of 23 dm mol(-1) s(-1) and 146 dm mol(-1) s(-1) for 4:Zn(II) and 5:Zn(II), respectively, at their (s)(s)pH maxima of 10.5 and 10. A mechanism is proposed that involves binding of one molecule of complex to the phosphate to yield a poorly reactive 1 : 1 complex, which associates with a second molecule of complex to produce a transient cooperative 2 : 1 complex within which the cyclization of 1 is rapid. The observations support an effect of the reduced polarity solvent that encourages the cooperative association of phosphate and two independent mononuclear complexes to give a reactive entity.  相似文献   

4.
The reaction of an S-bridged Co2(III)Ag3(I) pentanuclear complex, [Ag3[Co(aet)3]2][BF4]3 (aet = NH2CH2CH2S-), with paraformaldehyde in basic acetonitrile, followed by adding aqueous ammonia, produced an aza-capped Co2(III)-Ag3(I) complex, [Ag3[Co(L)]2]3+ ([1]3+) (L = N(CH2NHCH2CH2S-)3). The crystal structure of [1]3+ was determined by X-ray crystallography. [1][PF6]3 x H2O, empirical formula C18H44Ag3Co2F18N8OP3S6, crystallizes in the tetragonal space group 142m with a = 13.012(1) A, c = 24.707(2) A, and Z = 4. In [1]3+ the two aza-capped [Co(L)] units are linked by three Ag(I) atoms, such that the two Co(III) atoms are encapsulated in a macrobicyclic metallocage, [Ag3(I)(L)2]3-. [1]3+ was converted to an aza-capped Co4(III)Zn4(II) octanuclear complex, [Zn4O[Co(L)]4]6+ ([2]6+), by reaction with I- in the presence of Zn2+ and ZnO in water. The crystal structure of [2]6+ was also determined by X-ray crystallography. [2][PF6]6 x 8H2O, empirical formula C36H100Co4F36N16O9P6S12Zn4, crystallizes in the monoclinic space group P2(1/n) with a = 14.33(7) A, b = 25.67(10) A, c = 24.83(6) A, beta = 101.3(3) degrees , and Z = 4. In [2]6+ each of four [Co(L)] units is bound to each trigonal Zn3(II) face of the tetrahedral [Zn4(II)O]6+ core, such that each Co(III) atom is encapsulated in a macrobicyclic [Zn4(II)O(L)] fragment. Treatment of [2]6+ with a basic aqueous solution resulted in a cleavage of the Zn-S bonds to produce an aza-capped Co(III) mononuclear complex, [Co(L)] ([3]), from which [1]3+ is readily reproduced by the reaction with Ag+ in water. All the reactions were found to proceed with retention of the absolute configuration (delta or lambda) of the Co(III) chiral centers; deltadelta-[1]3+, deltadeltadeltadelta-[2]6+, and A-[3] were derived from deltadelta-[Ag3[Co(aet)3]2]3+. The contributions to circular dichroism (CD) from the triple helicity in [1]3+, besides from the asymmetric N and S donor atoms and the Co(III) chiral centers in [1]3+ and [2]6+, were estimated by comparing the CD spectra of deltadelta-[1]3+, deltadeltadeltadelta-[2]6+, and delta-[3].  相似文献   

5.
An N(4) tetradentate [1 + 1] Schiff base metal free macrocycle HL was prepared, by 1?:?1 condensation of 2,2'-iminobisbenzaldehyde (1) and diethylenetriamine, and characterised. Seven mononuclear complexes, [Zn(II)L(py)](BF(4)) (2), [Cu(II)L](BF(4))]·H(2)O (3), [Ni(II)L](BF(4))·H(2)O (4), [Co(II)L](BF(4))]·H(2)O (5), Fe(III)L(BF(4))(2)·2H(2)O·MeCN (6), [Co(III)L(NCS)(2)]·0.3py (7) and [Fe(III)L(NCS)(2)] (8), of L(-) are reported. The Cu(II) and Ni(II) complexes were prepared by a template approach whereas the others were accessed by metallation of pre-formed HL. The X-ray crystal structure determinations show that [Cu(II)L](BF(4)) and [Ni(II)L](BF(4)) feature square planar N(4) coordinated Cu(II) and Ni(II) centres, respectively, whereas [Fe(III)L(NCS)(2)]·NO(2)Me features an octahedral N(6) coordinated Fe(III) centre (two NCS anions bound axially) and the Zn(II) complex, which crystallised as 2{[Zn(II)L(py)](BF(4))}·py, features square pyramidal Zn(II) ions (a pyridine molecule bound axially). In all cases the N(4) macrocycle is bound equatorially to the metal ion. Cyclic voltammograms of the soluble BF(4) complexes, 2-5, were carried out in MeCN vs. 0.01 mol L(-1) AgNO(3)/Ag and revealed multiple, mostly irreversible or quasi-reversible, redox processes. The Zn(II) complex 2 exhibited two irreversible oxidation processes and one irreversible reduction process, all of which are ligand-centered. The Ni(II) complex 4 showed a process with a weak return wave at E(m) = +0.57 V (ΔE = 0.05 V). Interestingly, after controlled potential coulometry experiments on 2, 3 and 4 (at +0.48, +0.61 and +0.71 V which transferred 1.2, 1.0 and 1.6 e(-) equiv. per complex, respectively), a new reversible or quasi-reversible process was obtained, with a lower potential than beforehand (E(m) (ΔE)/V = +0.16 (0.08), +0.31 (0.13) and +0.45 (0.11) respectively).  相似文献   

6.
Neutral dimeric metallocyclic complexes of type [M(2)(L(1))(2)B(n)] (where M = cobalt(II), nickel(II) and zinc(II), L(1) is the doubly deprotonated form of a 1,3-aryl linked bis-beta-diketone ligand of type 1,3-bis(RC(O)CH(2)C(O))C(6)H(4) (R=Me, n-Pr, t-Bu) and B is pyridine (Py) or 4-ethylpyridine (EtPy)) have been synthesised, adding to similar complexes already reported for copper(II). New lipophilic ligand derivatives with R = octyl or nonyl were also prepared for use in solvent extraction experiments. Structural, electrochemical and solvent extraction investigations of selected metal complex systems from the above series are reported, with the X-ray structures of [Co(2)(L(1))(2)(Py)(4)] x 2.25CHCl(3) x 0.5H(2)O (R=Pr), [Co(2)(L(1))(2)(EtPy)(4)] (R=t-Bu), [Ni(2)(L(1))(2)(EtPy)(4)] (R=t-Bu), [Zn(2)(L(1))(2)(EtPy)(2)] (R=Me) and [Zn(2)(L(1))(2)(EtPy)(4)] (R=t-Bu) being presented. The electrochemistry of H(2)L(1) (R=t-Bu) and of [Fe(2)(L(1))(3)], [Co(2)(L(1))(2)(Py)(4)], [Ni(2)(L(1))(2)(Py)(4)], [Cu(2)(L(1))(2)] and [Zn(2)(L(1))(2)(Py)(2)] has been examined. Oxidative processes for the complexes are dominantly irreversible, but several examples of quasireversible behaviour were observed and support the assignment of an anodic process, seen between +1.0 and +1.6 V, as a metal-centred oxidation. The reduction processes for the respective metal complexes are not simple, and irreversible in most cases. Solvent extraction studies (water/chloroform) involving variable concentrations of metal, bis-beta-diketone and heterocyclic base have been performed for cobalt(II) and zinc(II) using a radiotracer technique to probe the stoichiometries of the extracted species in each case. Synergism was observed when 4-ethylpyridine was added to the bis-beta-diketone ligand in the chloroform phase. Competitive extraction studies show a clear uptake preference for copper(II) over cobalt(II), nickel(II), zinc(II) and cadmium(II).  相似文献   

7.
Three new azamacrocyclic-cyclophane hybrid receptors L(1), L(2), and L(3) have been synthesized that incorporate either 1,4,7,10-tetraazacyclododecane (cyclen) or 1,4,7-triazacyclononane (tacn) unit(s) tethered via a short amidic spacer to an electron donor and a H-bonding crown ether polycycle. The crown ether is designed to act as a host toward biologically relevant guests, whereas the macrocycle can coordinate a zinc(II) or a copper(II) ion. The pK(a) of this bound water in the zinc(II) complex of L(1) and L(2) is approximately 7.5. Isothermal calorimetry experiments carried out on [ZnL(1)(L2)(OH(2))](CF(3)SO(3))(2) and [Zn(2)L(2)(OH(2))(2)](CF(3)SO(3))(4) in buffered water (pH 7.4) at 25 degrees C show that the host strongly binds a series of phosphate derivatives. In comparison, the complex [CuL(3)(OH(2))(2)](CF(3)SO(3))(2) is a poor receptor toward phosphate substrates.  相似文献   

8.
Kimura E  Gotoh T  Aoki S  Shiro M 《Inorganic chemistry》2002,41(12):3239-3248
To elucidate intrinsic recognition of carboxamides by zinc(II) in carbonic anhydrase (CA) (as inhibitors) and carboxypeptidase A (CPA) (as substrates), a new series of Zn(2+)-carboxamide-appended cyclen complexes have been synthesized and characterized (cyclen = 1,4,7,10-tetraazacyclododecane). Two types of Zn(2+)-carboxamide interactions have been found. In the first case represented by a zinc(II) complex of carbamoylmethyl-1,4,7,10-tetraazacyclododecane (L(1)), the amide oxygen binds to zinc(II) at slightly acidic pH (to form ZnL(1)), and the deprotonated amide N(-) binds to zinc(II) at alkaline pH (to form ZnH(-1)L(1)) with pK(a) = 8.59 at 25 degrees C and I = 0.1 (NaNO(3)), as determined by potentiometric pH titrations, infrared spectral changes, and (13)C and (1)H NMR titrations. The X-ray crystal structure of ZnH(-1)L(3) (where L(3) = N-(4-nitrophenyl)carbamoylmethyl cyclen, pK(a) = 7.01 for ZnL(3) <==> ZnH(-1)L(3)) proved that the zinc(II) binds to the amidate N(-) (Zn-N(-) distance of 1.974(3) A) along with the four nitrogen atoms of cyclen (average Zn-N distance 2.136 A). Crystal data: monoclinic, space group P2(1)/n (No. 14) with a = 10.838(1) A, b = 17.210(2) A, c = 12.113(2) A, b = 107.38(1) degrees, V = 2156.2(5) A(3), Z = 4, R = 0.042, and R(w) = 0.038. These model studies provide the first chemical support that carboxamides are CA(-) inhibitors by occupying the active Zn(2+) site both in acidic and alkaline pH to prevent the occurrence of the catalytically active Zn(2+)-OH(-) species. In the second case represented by a zinc(II) complex of 1-(N-acetyl)aminoethylcyclen, ZnL(6), the pendant amide oxygen had little interaction with zinc(II) at acidic pH. At alkaline pH, the monodeprotonation yielded a zinc(II)-bound hydroxide species ZnL(6)(OH(-)) (pK(a) = 7.64) with the amide pendant remaining intact. The ZnL(6)(OH(-)) species showed the same nucleophilic activity as Zn(2+)-cyclen-OH(-). The second case may mimic the Zn(2+)-OH(-) mechanism of CPA, where the nucleophilic Zn(2+)-OH(-) species does not act as a base to deprotonate a proximate amide.  相似文献   

9.
The coordination behaviour of a new thiosemicarbazone Schiff-base building block, N-{2-([4-N-ethylthiosemicarbazone]methyl)phenyl}-p-toluenesulfonamide, H2L1 (1), incorporating a bulky tosyl group, towards Mn II, Fe II, Co II, Ni II, Cu II, Zn II, Cd II, Ag I, Sn II, and Pb II has been investigated by means of an electrochemical preparative procedure. Most metal complexes of L1 have the general formula [M(L1)]2.nX (M=Mn, Fe, Co, Ni, Cu, Cd, Pb; n=0-4, X=H2O or CH3CN), as confirmed by the structure of [Pb(L1)]2 (15), in which the lone pair on lead is stereochemically active. This lead(II) complex shows an intense fluorescence emission with a quantum yield of 0.13. In the case of silver, the complex formed was found to possess a stoichiometry of [Ag2(L1)]2.3H2O. During reactions with manganese and copper metals, interesting catalysed processes have been found to take place, with remarkable consequences regarding the ligand skeleton structure. In synthesising the manganese complex, we obtained an unexpected dithiolate thiosemicarbazone tosyl ligand, H2L2, as a side-product, which has been fully characterised, including by X-ray diffraction analysis. In the case of copper, the solid complex has the formula [CuL1]2, but the crystallised product shows the copper atoms coordinated to a new cyclised thiosemicarbazone ligand, H2L3, as in the structures of the complexes [Cu(L3)]2.CH3CN (8) and [Cu(L3)(H2O)]2.CH3CN.H2O (9). The zinc complex [Zn(L1)]4 (12) displays a particular tetranuclear zeolite-type structure capable of hosting small molecules or ions, presumably through hydrogen bonding.  相似文献   

10.
A family of thirteen tetranuclear heterometallic zinc(II)-lanthanide(III) complexes of the hexa-imine macrocycle (L(Pr))(6-), with general formula Zn(II)(3)Ln(III)(L(Pr))(NO(3))(3)·xsolvents (Ln = La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm or Yb), were prepared in a one-pot synthesis using a 3:1:3:3 reaction of zinc(II) acetate, the appropriate lanthanide(III) nitrate, the dialdehyde 1,4-diformyl-2,3-dihydroxybenzene (H(2)L(1)) and 1,3-diaminopropane. A hexanuclear homometallic zinc(II) macrocyclic complex [Zn(6)(L(Pr))(OAc)(5)(OH)(H(2)O)]·3H(2)O was obtained using a 2:0:1:1 ratio of the same reagents. A control experiment using a 1:0:1:1 ratio failed to generate the lanthanide-free [Zn(3)(L(Pr))] macrocyclic complex. The reaction of H(2)L(1) and zinc(II) acetate in a 1:1 ratio yielded the pentanuclear homometallic complex of the dialdehyde H(2)L(1), [Zn(5)(L(1))(5)(H(2)O)(6)]·3H(2)O. An X-ray crystal structure determination revealed [Zn(3)(II)Pr(III)(L(Pr))(NO(3))(2)(DMF)(3)](NO(3))·0.9DMF has the large ten-coordinate lanthanide(III) ion bound in the central O(6) site with two bidentate nitrate anions completing the O(10) coordination sphere. The three square pyramidal zinc(II) ions are in the outer N(2)O(2) sites with a fifth donor from DMF. Measurement of the magnetic properties of [Zn(II)(3)Dy(III)(L(Pr))(NO(3))(3)(MeOH)(3)]·4H(2)O with a weak external dc field showed that it has a frequency-dependent out-of-phase component of ac susceptibility, indicative of slow relaxation of the magnetization (SMM behaviour). Likewise, the Er and Yb analogues are field-induced SMMs; the latter is only the second example of a Yb-based SMM. The neodymium, ytterbium and erbium complexes are luminescent in the solid phase, but only the ytterbium and neodymium complexes show strong lanthanide-centred luminescence in DMF solution.  相似文献   

11.
Two tetradentate ligands 1,2-bis[2-((dimethylamino)methyl)-6-pyridyl]ethane (L1) and 1,2-bis[2-(N-piperidinomethyl)-6-pyridyl]ethane (L2) and a hexadentate ligand 1,2-bis(2-((methyl(pyridylmethyl)amino)methyl)-6-pyridyl)ethane (L3) were prepared as part of a series of new polypyridine ligands possessing a 1,2-bis(2-pyridyl)ethane common moiety. L1 and L2 form mononuclear Cu(II) complexes [Cu(L)(Cl)](ClO4) [L = L1 (1) and L2 (2)], respectively. L3 forms a dinuclear Cu(II) complex [Cu2(L3)((PhO)2PO2)2](ClO4)2 (3) or a hexanuclear Cu(II) complex [Cu6(L3)3((PhO)PO3)4](ClO4)4 (4) in the presence of (PhO)2PO2- monoanion or (PhO)PO3(2-) dianion, respectively. The structures of 1-4 were determined by X-ray analysis. The structures in solution were investigated by means of FAB and CSI MS spectrometers. The structural flexibility of the common 1,2-bis(2-pyridyl)ethane moiety and of the pendant groups allows complexes 1-4 to adapt to the various structures. Each Cu ion in 1 and 2 adopts a square pyramidal geometry with one Cl ion and two pendant groups (L1 and L2) binding in a bis-bidentate chelate mode. There is no steric repulsion between the pendant groups, so that the ligands specifically stabilize the mononuclear structures. L3 binds two Cu(II) ions with two pendant groups in tridentate chelate modes and, with the incorporation of phosphate esters, various dinuclear units are formed in 3 and 4. In 4, a dinuclear unit of [Cu2(L3)]4+ links two dinuclear units of [Cu2(L3)(PhOPO3)2] with four (mu3)-1,3-PhOPO3(2-) bridges. The hydrolytic activity of 2 and a dicopper(II) complex of L3 was examined with tris(p-nitrophenyl) phosphate (TNP) as a substrate.  相似文献   

12.
Reaction of hydrated Zn[NO3]2 or Zn[BF4]2 with four or more equivalents of 3{5}-tert-butylpyrazole (L(tBu)) yields [Zn(L(tBu))4]X2 (X- = NO3- or BF4-). The nitrate complex contains C2-symmetric four-coordinate zinc(II) centers with a slightly flattened tetrahedral geometry, and each nitrate anion hydrogen bonds to two pyrazole N-H groups. Similar reactions with Zn[ClO4]2 or ZnCl2 in the presence of 2 equiv of AgPF6 or AgSbF6 yield instead [{Zn(L(tBu))4}(L(tBu))4][ClO4]2 and [{Zn(L(tBu))4}(L(tBu))2]Y2 (Y- = PF6- or SbF6-). Crystals of [{Zn(L(tBu))4}(L(tBu))4][ClO4]2 are composed of discrete [{Zn(L(tBu))4}(L(tBu))4]2+ supramolecules that are formed from N-H...N hydrogen bonding between zinc-bound and uncoordinated pyrazole rings. The [{Zn(L(tBu))4}(L(tBu))4]2+ moieties are linked into planar 4(4) nets by hydrogen bonding to bridging ClO4- anions. The ClO4- ions are almost perfectly encapsulated in near-spherical cavities of approximate dimensions 5.0 x 5.0 x 4.5 A that are formed by two interlocked supramolecular dications. Similarly, [{Zn(L(tBu))4}(L(tBu))2][PF6]2 crystallizes as discrete supramolecules in the crystal with the PF6- anions occupying a shallow bowl-shaped cavity on the surface of the complex that is formed by two zinc-bound and one uncoordinated pyrazole ligands. (1)H NMR and IR studies of [{Zn(L(tBu))4}(L(tBu))4][ClO4]2 in CD2Cl2 imply that the second-sphere L(tBu) ligands dissociate from the [Zn(L(tBu))4]2+ center in this solvent and that free and metal-bound L(tBu) are in rapid chemical exchange.  相似文献   

13.
Uncharged complexes, formulated as trimeric metallocycles of type [M3(L(1))3(Py)6] (where M = cobalt(II), nickel(II) and zinc(II) and L(1) is the doubly deprotonated form of a 1,4-phenylene linked bis-beta-diketone ligand of type 1,4-bis(RC(O)CH2C(O))C6H4 (R = t-Bu)) have been synthesised, adding to related, previously reported complexes of these metals with L(1) (R = Ph) and copper(ii) with L(1) (R = Me, Et, Pr, t-Bu, Ph). New lipophilic ligand derivatives with R = hexyl, octyl or nonyl were also prepared for use in solvent extraction experiments. The X-ray structures of H2L(1) (R = t-Bu) and of its trinuclear (triangular) nickel(II) complex [Ni3(L(1))3(Py)6].3.5Py (R = t-Bu) are also presented. Electrochemical studies of H2L(1), [Co3(L(1))3(Py)6], [Ni3(L(1))3(Py)6], [Cu3(L(1))3], [Zn3(L(1))3(Py)6] and [Fe4(L(1))6] (all with R = t-Bu) show that oxidative processes for the complexes are predominantly irreversible, but several examples of quasireversible behaviour also occur and support the assignment of an anodic process, seen between +1.0 and +1.6 V, as involving metal-centred oxidations. The reduction behaviour for the respective metal complexes is not simple, being irreversible in most cases. Solvent extraction studies (water/chloroform) involving the systematic variation of the metal, bis-beta-diketone and heterocyclic base concentrations have been performed for cobalt(II) and zinc(II) using a radiotracer technique in order to probe the stoichiometries of the respective extracted species. Significant extraction synergism was observed when 4-ethylpyridine was also present with the bis-beta-diketone ligand in the chloroform phase. Competitive extraction studies demonstrated a clear uptake preference for copper(II) over cobalt(II), nickel(II), zinc(II) and cadmium(II).  相似文献   

14.
The title complex [bis(dien)zinc(II)] zinc(II) tetrachloride was synthesized and characterized by X-ray single-crystal diffraction, elemental analysis, electric conductivity, IR and electronic spectra. The compound crystallizes in the tetragonal system, space group I4 with a = 10.250(3), b = 10.250(3), c = 9.054(2) -, V = 951.2(5) 3, Mr = 486.95, Z = 2, F(000) = 504, Dc = 1.700 g/cm3, μ = 3.083 mm-1, λ = 0.71073 , the final R = 0.0226 and wR = 0.0642. The symmetric crystal structure consists of a zinc complex cation [Zn(dien)2]2+ and a zinc tetrachloride anion [ZnCl4]2-, forming a three-dimensional framework through intramolecular and intermolecular hydrogen bonds.  相似文献   

15.
Analogues of the ligand 2,2'-(2-hydroxy-5-methyl-1,3-phenylene)bis(methylene)bis((pyridin-2-ylmethyl)azanediyl)diethanol (CH(3)H(3)L1) are described. Complexation of these analogues, 2,6-bis(((2-methoxyethyl)(pyridin-2-ylmethyl)amino)methyl)-4-methylphenol (CH(3)HL2), 4-bromo-2,6-bis(((2-methoxyethyl)(pyridin-2-ylmethyl)amino)methyl)phenol (BrHL2), 2,6-bis(((2-methoxyethyl)(pyridin-2-ylmethyl)amino)methyl)-4-nitrophenol (NO(2)HL2) and 4-methyl-2,6-bis(((2-phenoxyethyl)(pyridin-2-ylmethyl)amino)methyl)phenol (CH(3)HL3) with zinc(II) acetate afforded [Zn(2)(CH(3)L2)(CH(3)COO)(2)](PF(6)), [Zn(2)(NO(2)L2)(CH(3)COO)(2)](PF(6)), [Zn(2)(BrL2)(CH(3)COO)(2)](PF(6)) and [Zn(2)(CH(3)L3)(CH(3)COO)(2)](PF(6)), in addition to [Zn(4)(CH(3)L2)(2)(NO(2)C(6)H(5)OPO(3))(2)(H(2)O)(2)](PF(6))(2) and [Zn(4)(BrL2)(2)(PO(3)F)(2)(H(2)O)(2)](PF(6))(2). The complexes were characterized using (1)H and (13)C NMR spectroscopy, mass spectrometry, microanalysis, and X-ray crystallography. The complexes contain either a coordinated methyl- (L2 ligands) or phenyl- (L3 ligand) ether, replacing the potentially nucleophilic coordinated alcohol in the previously reported complex [Zn(2)(CH(3)HL1)(CH(3)COO)(H(2)O)](PF(6)). Functional studies of the zinc complexes with the substrate bis(2,4-dinitrophenyl) phosphate (BDNPP) showed them to be competent catalysts with, for example, [Zn(2)(CH(3)L2)](+), k(cat) = 5.70 ± 0.04 × 10(-3) s(-1) (K(m) = 20.8 ± 5.0 mM) and [Zn(2)(CH(3)L3)](+), k(cat) = 3.60 ± 0.04 × 10(-3) s(-1) (K(m) = 18.9 ± 3.5 mM). Catalytically relevant pK(a)s of 6.7 and 7.7 were observed for the zinc(II) complexes of CH(3)L2(-) and CH(3)L3(-), respectively. Electron donating para-substituents enhance the rate of hydrolysis of BDNPP such that k(cat)p-CH(3) > p-Br > p-NO(2). Use of a solvent mixture containing H(2)O(18)/H(2)O(16) in the reaction with BDNPP showed that for [Zn(2)(CH(3)L2)(CH(3)COO)(2)](PF(6)) and [Zn(2)(NO(2)L2)(CH(3)COO)(2)](PF(6)), as well as [Zn(2)(CH(3)HL1)(CH(3)COO)(H(2)O)](PF(6)), the (18)O label was incorporated in the product of the hydrolysis suggesting that the nucleophile involved in the hydrolysis reaction was a Zn-OH moiety. The results are discussed with respect to the potential nucleophilic species (coordinated deprotonated alcohol versus coordinated hydroxide).  相似文献   

16.
Hydrothermal reactions of N-(phosphonomethyl)-N-methylglycine, MeN(CH(2)CO(2)H)(CH(2)PO(3)H(2)) (H(3)L), with zinc(II) acetate resulted in the formation of a novel zinc carboxylate-phosphonate, [Zn(6)L(6)(Zn)][Zn(H(2)O)(6)](2) x 22H(2)O (1). The structure of 1 contains a heptanuclear zinc phosphonate cluster anion, [Zn(6)L(6)(Zn)](4-), in which seven zinc(II) cations form an unusual Zn(6)(Zn) centered octahedron with six of its Zn(3) triangle faces each further capped by a phosphonate group. The Zn(II) cations of the Zn(6) octahedron are five-coordinated whereas the centered Zn(II) cation is octahedrally coordinated. Packing of these cluster anions creates micropores occupied by the hydrated zinc(II) cations as well as lattice water molecules. The structural skeleton of 1 is retained after the removal of the lattice water molecules.  相似文献   

17.
Pribil R 《Talanta》1975,22(8):688-689
A new method for coraplexometric determination of rare earths (RE) and phosphate without prior separation is described. It is based on indirect determination of RE by back-titration of an excess of DTPA with zinc solution, with Xylenol Orange as indicator. After the titration an excess of La-EDTA complex solution is added and the solution is titrated again with zinc at 40-50 degrees . During this titration lanthanum is displaced from its complex and precipitated as phosphate: LaY(-) + Zn(2+)+ PO(4)(3-) = LaPO(4) + ZnY(2-). The consumption of zinc solution corresponds to the amount of phosphate.  相似文献   

18.
Two highly charged zinc complexes, [Zn(L1)3](ClO4)8.4H2O (1) and [Zn(L2)2Br](ClO4)5.H2O (2) (L1 = 5,5'-di(1-(triethylammonio)methyl)-2,2'-dipyridyl and L2= 5,5'-di(1-(tributylammonio)methyl)-2,2'-dipyridyl) were synthesized and structurally characterized by crystallography. The zinc atom in 1 shows a distorted octahedral sphere. Variable-pH NMR studies on 1 demonstrated that the saturated six-coordinated [Zn(L1)3]8+ species can partially change into five-coordinated [Zn(L1)2(H2O)]6+ species in aqueous solution. The zinc atom in 2 shows a distorted trigonal-bipyramidal sphere. The average distance of the coordinated Br atom to the cationic N atom in 2 is ca 5.9 A, which is comparable to that of adjacent phosphodiesters in the DNA (ca. 6 A). Both complexes exhibited high nuclease activities towards cleavage of supercoiled plasmid DNA with the activity being the maximum under physiological pH. The effective DNA cleavage may be attributed to the strong electrostatic interaction of the metal moiety and two positive pendants with phosphodiester groups of nucleic acid.  相似文献   

19.
A new 2-(9-anthrylmethylamino)ethyl-appended cyclen, L(3) (1-(2-(9-anthrylmethylamino)ethyl)-1,4,7,10-tetraazacyclododecane) (cyclen = 1,4,7,10-tetraazacyclododecane), was synthesized and characterized for a new Zn(2+) chelation-enhanced fluorophore, in comparison with previously reported 9-anthrylmethylcyclen L(1) (1-(9-anthrylmethyl)-1,4,7,10-tetraazacyclododecane) and dansylamide cyclen L(2). L(3) showed protonation constants log K(a)(i)() of 10.57 +/- 0.02, 9.10 +/- 0.02, 7.15 +/- 0.02, <2, and <2. The log K(a3) value of 7.15 was assigned to the pendant 2-(9-anthrylmethylamino)ethyl on the basis of the pH-dependent (1)H NMR and fluorescence spectroscopic measurements. The potentiometric pH titration study indicated extremely stable 1:1 Zn(2+)-L(3) complexation with a stability constant log K(s)(ZnL(3)) (where K(s)(ZnL(3)) = [ZnL(3)]/[Zn(2+)][L(3)] (M(-)(1))) of 17.6 at 25 degrees C with I = 0.1 (NaNO(3)), which is translated into the much smaller apparent dissociation constant K(d) (=[Zn(2+)](free)[L(3)](free)/[ZnL(3)]) of 2 x 10(-)(11) M with respect to 5 x 10(-)(8) M for L(1) at pH 7.4. The quantum yield (Phi = 0.14) in the fluorescent emission of L(3) increased to Phi = 0.44 upon complexation with zinc(II) ion at pH 7.4 (excitation at 368 nm). The fluorescence of 5 microM L(3) at pH 7.4 linearly increased with a 0.1-5 microM concentration of zinc(II). By comparison, the fluorescent emission of the free ligand L(1) decreased upon binding to Zn(2+) (from Phi = 0.27 to Phi = 0.19) at pH 7.4 (excitation at 368 nm). The Zn(2+) complexation with L(3) occurred more rapidly (the second-order rate constant k(2) is 4.6 x 10(2) M(-)(1) s(-)(1)) at pH 7.4 than that with L(1) (k(2) = 5.6 x 10 M(-)(1) s(-)(1)) and L(2) (k(2) = 1.4 x 10(2) M(-)(1) s(-)(1)). With an additionally inserted ethylamine in the pendant group, the macrocyclic ligand L(3) is a more effective and practical zinc(II) fluorophore than L(1).  相似文献   

20.
Dinuclear Cd(II), Cu(II), and Zn(II) complexes of L2OH (L2OH = 1,3-bis(1,4,7-triazacyclonon-1-yl)-2-hydroxypropane) are compared as catalysts for cleavage of the RNA analogue HpPNP (HpPNP = 2-hydroxypropyl 4-nitrophenyl phosphate) at 25 degrees C, I = 0.10 M (NaNO(3)). Zn(II) and Cu(II) readily form dinuclear complexes at millimolar concentrations and a 2:1 ratio of metal ion to L2OH at neutral pH. The dinuclear Zn(2)(L2O) and Cu(2)(L2O) complexes have a bridging alkoxide group that brings together the two cations in close proximity to facilitate cooperative catalysis. Under similar conditions, the dinuclear complex of Cd(II) is a minor species in solution; only at high pH values (pH 10.4) does the Cd(2)(L2O) complex become the predominant species in solution. Analysis of the second-order rate constants for cleavage of HpPNP by Zn(2)(L2O) is straightforward because a linear dependence of pseudo-first-order rate constant on dinuclear complex is observed over a wide pH range. In contrast, plots of pseudo-first-order rate constants for cleavage of HpPNP by solutions containing a 2:1 ratio of Cd(II) to L2OH as a function of increasing L2OH are curved, and second-order rate constants are obtained by fitting the kinetic data to an equation for the formation of the dinuclear Cd(II) complex as a function of pH and [L2OH]. Second-order rate constants for cleavage of HpPNP by these dinuclear complexes at pH 9.3 and 25 degrees C vary by 3 orders of magnitude in the order Cd(2)(L2O) (2.8 M(-)(1) s(-)(1)) > Zn(2)(L2O) (0.68 M(-)(1) s(-)(1)) > Cu(2)(L2O) (0.0041 M(-1) s(-1)). The relative reactivity of these complexes is discussed in terms of the different geometric preferences and Lewis acidity of the dinuclear Zn(II), Cu(II), and Cd(II) complexes, giving insight into the importance of these catalyst properties in the cleavage of phosphate diesters resembling RNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号