首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In this article, we study the bivariate Fibonacci and Lucas p-polynomials (p ? 0 is integer) from which, specifying x, y and p, bivariate Fibonacci and Lucas polynomials, bivariate Pell and Pell-Lucas polynomials, Jacobsthal and Jacobsthal-Lucas polynomials, Fibonacci and Lucas p-polynomials, Fibonacci and Lucas p-numbers, Pell and Pell-Lucas p-numbers and Chebyshev polynomials of the first and second kind, are obtained. Afterwards, we obtain some properties of the bivariate Fibonacci and Lucas p-polynomials.  相似文献   

2.
The cube polynomial of a graph is the counting polynomial for the number of induced k-dimensional hypercubes (k≥0). We determine the cube polynomial of Fibonacci cubes and Lucas cubes, as well as the generating functions for the sequences of these cubes. Several explicit formulas for the coefficients of these polynomials are obtained, in particular they can be expressed with convolved Fibonacci numbers. Zeros of the studied cube polynomials are explicitly determined. Consequently, the coefficients sequences of cube polynomials of Fibonacci and Lucas cubes are unimodal.  相似文献   

3.
In this paper, we investigate the exact distribution of the waiting time for ther-th ℓ-overlapping occurrence of success-runs of a specified length in a sequence of two state Markov dependent trials. The probability generating functions are derived explicitly, and as asymptotic results, relationships of a negative binomial distribution of orderk and an extended Poisson distribution of orderk are discussed. We provide further insights into the run-related problems from the viewpoint of the ℓ-overlapping enumeration scheme. We also study the exact distribution of the number of ℓ-overlapping occurrences of success-runs in a fixed number of trials and derive the probability generating functions. The present work extends several properties of distributions of orderk and leads us a new type of geneses of the discrete distributions.  相似文献   

4.
Engin Özkan  İpek Altun 《代数通讯》2013,41(10):4020-4030
In this article, we find elements of the Lucas polynomials by using two matrices. We extend the study to the n-step Lucas polynomials. Then the Lucas polynomials and their relationship are generalized in the paper. Furthermore, we give relationships between the Fibonacci polynomials and the Lucas polynomials.  相似文献   

5.
The aim of this paper is to give new results about factorizations of the Fibonacci numbers F n and the Lucas numbers L n . These numbers are defined by the second order recurrence relation a n+2 = a n+1+a n with the initial terms F 0 = 0, F 1 = 1 and L 0 = 2, L 1 = 1, respectively. Proofs of theorems are done with the help of connections between determinants of tridiagonal matrices and the Fibonacci and the Lucas numbers using the Chebyshev polynomials. This method extends the approach used in [CAHILL, N. D.—D’ERRICO, J. R.—SPENCE, J. P.: Complex factorizations of the Fibonacci and Lucas numbers, Fibonacci Quart. 41 (2003), 13–19], and CAHILL, N. D.—NARAYAN, D. A.: Fibonacci and Lucas numbers as tridiagonal matrix determinants, Fibonacci Quart. 42 (2004), 216–221].  相似文献   

6.
Let h(x) be a polynomial with real coefficients. We introduce h(x)-Fibonacci polynomials that generalize both Catalan’s Fibonacci polynomials and Byrd’s Fibonacci polynomials and also the k-Fibonacci numbers, and we provide properties for these h(x)-Fibonacci polynomials. We also introduce h(x)-Lucas polynomials that generalize the Lucas polynomials and present properties of these polynomials. In the last section we introduce the matrix Qh(x) that generalizes the Q-matrix whose powers generate the Fibonacci numbers.  相似文献   

7.
For any >0, we present an algorithm which takes as input a semi-algebraic set, S, defined by P 1≤0,…,P s ≤0, where each P i R[X 1,…,X k ] has degree≤2, and computes the top Betti numbers of S, b k−1(S),…,b k (S), in polynomial time. The complexity of the algorithm, stated more precisely, is . For fixed , the complexity of the algorithm can be expressed as , which is polynomial in the input parameters s and k. To our knowledge this is the first polynomial time algorithm for computing nontrivial topological invariants of semialgebraic sets in R k defined by polynomial inequalities, where the number of inequalities is not fixed and the polynomials are allowed to have degree greater than one. For fixed s, we obtain, by letting =k, an algorithm for computing all the Betti numbers of S whose complexity is . An erratum to this article can be found at  相似文献   

8.
It has been shown that the number of occurrences of any ℓ-line configuration in a Steiner triple system can be written as a linear combination of the numbers of full m-line configurations for 1 ≤ m ≤ ℓ; full means that every point has degree at least two. More precisely, the coefficients of the linear combination are ratios of polynomials in v, the order of the Steiner triple system. Moreover, the counts of full configurations, together with v, form a linear basis for all of the configuration counts when ℓ ≤ 7. By relaxing the linear integer equalities to fractional inequalities, a configuration polytope is defined that captures all feasible assignments of counts to the full configurations. An effective procedure for determining this polytope is developed and applied when ℓ = 6. Using this, minimum and maximum counts of each configuration are examined, and consequences for the simultaneous avoidance of sets of configurations explored. To Alex Rosa on the Occasion of his Seventieth Birthday  相似文献   

9.
We consider particular (k, ℓ)-hook probability measures on the space of the infinite standard Young tableaux, and calculate the probability that the entry at the (1, 2) cell is odd. As n goes to infinity, this, approximately, is the corresponding probability on tableaux of size n in the (k, ℓ) hook. In few cases of small k and ℓ we find exact formulas for the corresponding numbers of such standard tableaux.  相似文献   

10.
In this paper some decompositions of Cauchy polynomials, Ferrers-Jackson polynomials and polynomials of the form x 2n + y 2n , n ∈ ℕ, are studied. These decompositions are used to generate the identities for powers of Fibonacci and Lucas numbers as well as for powers of the so called conjugate recurrence sequences. Also, some new identities for Chebyshev polynomials of the first kind are presented here.  相似文献   

11.
Let {φ k } be an orthonormal system on a quasi-metric measure space  ${\mathbb{X}}Let {φ k } be an orthonormal system on a quasi-metric measure space  \mathbbX{\mathbb{X}}, { k } be a nondecreasing sequence of numbers with lim  k→∞ k =∞. A diffusion polynomial of degree L is an element of the span of {φ k : k L}. The heat kernel is defined formally by Kt(x,y)=?k=0exp(-lk2t)fk(x)[`(fk(y))]K_{t}(x,y)=\sum_{k=0}^{\infty}\exp(-\ell _{k}^{2}t)\phi_{k}(x)\overline{\phi_{k}(y)}. If T is a (differential) operator, and both K t and T y K t have Gaussian upper bounds, we prove the Bernstein inequality: for every p, 1≤p≤∞ and diffusion polynomial P of degree L, ‖TP p c 1 L c P p . In particular, we are interested in the case when \mathbbX{\mathbb{X}} is a Riemannian manifold, T is a derivative operator, and p 1 2p\not=2. In the case when \mathbbX{\mathbb{X}} is a compact Riemannian manifold without boundary and the measure is finite, we use the Bernstein inequality to prove the existence of quadrature formulas exact for integrating diffusion polynomials, based on an arbitrary data. The degree of the diffusion polynomials for which this formula is exact depends upon the mesh norm of the data. The results are stated in greater generality. In particular, when T is the identity operator, we recover the earlier results of Maggioni and Mhaskar on the summability of certain diffusion polynomial valued operators.  相似文献   

12.
Let S⊂ℝ k+m be a compact semi-algebraic set defined by P 1≥0,…,P ≥0, where P i ∈ℝ[X 1,…,X k ,Y 1,…,Y m ], and deg (P i )≤2, 1≤i. Let π denote the standard projection from ℝ k+m onto ℝ m . We prove that for any q>0, the sum of the first q Betti numbers of π(S) is bounded by (k+m) O(q ). We also present an algorithm for computing the first q Betti numbers of π(S), whose complexity is . For fixed q and , both the bounds are polynomial in k+m. The author was supported in part by an NSF Career Award 0133597 and a Sloan Foundation Fellowship.  相似文献   

13.
We consider a variant of Heilbronn’s triangle problem by investigating for a fixed dimension d≥2 and for integers k≥2 with kd distributions of n points in the d-dimensional unit cube [0,1] d , such that the minimum volume of the simplices, which are determined by (k+1) of these n points is as large as possible. Denoting by Δ k,d (n), the supremum of this minimum volume over all distributions of n points in [0,1] d , we show that c k,d ⋅(log n)1/(dk+1)/n k/(dk+1)Δ k,d (n)≤c k,d ′/n k/d for fixed 2≤kd, and, moreover, for odd integers k≥1, we show the upper bound Δ k,d (n)≤c k,d ″/n k/d+(k−1)/(2d(d−1)), where c k,d ,c k,d ′,c k,d ″>0 are constants. A preliminary version of this paper appeared in COCOON ’05.  相似文献   

14.
This paper contains three parts where each part triggered and motivated the subsequent one. In the first part (Proper Secrets) we study the Shamir’s “k-out-of-n” threshold secret sharing scheme. In that scheme, the dealer generates a random polynomial of degree k−1 whose free coefficient is the secret and the private shares are point values of that polynomial. We show that the secret may, equivalently, be chosen as any other point value of the polynomial (including the point at infinity), but, on the other hand, setting the secret to be any other linear combination of the polynomial coefficients may result in an imperfect scheme. In the second part ((t, k)-bases) we define, for every pair of integers t and k such that 1 ≤ t ≤ k−1, the concepts of (t, k)-spanning sets, (t, k)-independent sets and (t, k)-bases as generalizations of the usual concepts of spanning sets, independent sets and bases in a finite-dimensional vector space. We study the relations between those notions and derive upper and lower bounds for the size of such sets. In the third part (Linear Codes) we show the relations between those notions and linear codes. Our main notion of a (t, k)-base bridges between two well-known structures: (1, k)-bases are just projective geometries, while (k−1, k)-bases correspond to maximal MDS-codes. We show how the properties of (t, k)-independence and (t, k)-spanning relate to the notions of minimum distance and covering radius of linear codes and how our results regarding the size of such sets relate to known bounds in coding theory. We conclude by comparing between the notions that we introduce here and some well known objects from projective geometry.   相似文献   

15.
The sequence space bvp consisting of all sequences (xk) such that (xk -xk-1) belongs to the space gp has recently been introduced by Basar and Altay [Ukrainian Math. J., 55(1), 136-147(2003)]; where 1 ≤ p ≤ ∞. In the present paper, some results concerning with the continuous dual and f-dual, and the AD-property of the sequence space bvp have been given and the norm of the difference operator A acting on the sequence space bvp has been found. The fine spectrum with respect to the Goldberg's classification of the difference operator △ over the sequence space bvp has been determined, where 1≤p〈∞.  相似文献   

16.
For a finite p-group G and a positive integer k let I k (G) denote the intersection of all subgroups of G of order p k . This paper classifies the finite p-groups G with Ik(G) @ Cpk-1{{I}_k(G)\cong C_{p^{k-1}}} for primes p > 2. We also show that for any k, α ≥ 0 with 2(α + 1) ≤ k ≤ nα the groups G of order p n with Ik(G) @ Cpk-a{{I}_k(G)\cong C_{p^{k-\alpha}}} are exactly the groups of exponent p n-α .  相似文献   

17.
We introduce a natural partial order ≤ in structurally natural finite subsets of the cobweb prefabs sets recently constructed by the present author. Whitney numbers of the second kind of the corresponding subposet which constitute Stirling-like numbers’ triangular array — are then calculated and the explicit formula for them is provided. Next — in the second construction — we endow the set sums of prefabiants with such an another partial order that their Bell-like numbers include Fibonacci triad sequences introduced recently by the present author in order to extend famous relation between binomial Newton coefficients and Fibonacci numbers onto the infinity of their relatives among whom there are also the Fibonacci triad sequences and binomial-like coefficients (incidence coefficients included). The first partial order is F-sequence independent while the second partial order is F-sequence dependent where F is the so-called admissible sequence determining cobweb poset by construction. An F-determined cobweb poset’s Hasse diagram becomes Fibonacci tree sheathed with specific cobweb if the sequence F is chosen to be just the Fibonacci sequence. From the stand-point of linear algebra of formal series these are generating functions which stay for the so-called extended coherent states of quantum physics. This information is delivered in the last section. Presentation (November 2006) at the Gian-Carlo Rota Polish Seminar .  相似文献   

18.
New results about some sums s n (k, l) of products of the Lucas numbers, which are of similar type as the sums in [SEIBERT, J.—TROJOVSK Y, P.: On multiple sums of products of Lucas numbers, J. Integer Seq. 10 (2007), Article 07.4.5], and sums σ(k) = $ \sum\limits_{l = 0}^{\tfrac{{k - 1}} {2}} {(_l^k )F_k - 2l^S n(k,l)} $ \sum\limits_{l = 0}^{\tfrac{{k - 1}} {2}} {(_l^k )F_k - 2l^S n(k,l)} are derived. These sums are related to the numerator of generating function for the kth powers of the Fibonacci numbers. s n (k, l) and σ(k) are expressed as the sum of the binomial and the Fibonomial coefficients. Proofs of these formulas are based on a special inverse formulas.  相似文献   

19.
In this paper we obtain some new identities containing Fibonacci and Lucas numbers. These identities allow us to give some congruences concerning Fibonacci and Lucas numbers such as L 2mn+k ≡ (−1)(m+1)n L k (mod L m ), F 2mn+k ≡ (−1)(m+1)n F k (mod L m ), L 2mn+k ≡ (−1) mn L k (mod F m ) and F 2mn+k ≡ (−1) mn F k (mod F m ). By the achieved identities, divisibility properties of Fibonacci and Lucas numbers are given. Then it is proved that there is no Lucas number L n such that L n = L 2 k t L m x 2 for m > 1 and k ≥ 1. Moreover it is proved that L n = L m L r is impossible if m and r are positive integers greater than 1. Also, a conjecture concerning with the subject is given.  相似文献   

20.
For a graph G, we define σ2(G) := min{d(u) + d(v)|u, v ≠ ∈ E(G), u ≠ v}. Let k ≥ 1 be an integer and G be a graph of order n ≥ 3k. We prove if σ2(G) ≥ n + k − 1, then for any set of k independent vertices v 1,...,v k , G has k vertex-disjoint cycles C 1,..., C k of length at most four such that v i V(C i ) for all 1 ≤ ik. And show if σ2(G) ≥ n + k − 1, then for any set of k independent vertices v 1,...,v k , G has k vertex-disjoint cycles C 1,..., C k such that v i V(C i ) for all 1 ≤ i ≤ k, V(C 1) ∪...∪ V(C k ) = V(G), and |C i | ≤ 4 for all 1 ≤ i ≤ k − 1. The condition of degree sum σ2(G) ≥ n + k − 1 is sharp. Received: December 20, 2006. Final version received: December 12, 2007.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号