首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A complex of Cu(II) chloride with 2-amino-5-ethyl-1,3,4-thiadiazole (AET) was prepared, and its structure was studied by IR spectroscopy and single crystal X-ray diffraction. The complex has the composition CuCl2(AET)4. The coordination sphere of the copper atom includes four molecules of the heterocyclic ligand coordinated via N atoms of thiadiazole rings and one of Cl? anions; the second Cl? anion is in the outer sphere.  相似文献   

2.
Tetradentate Schiff-base carboxylate-containing ligands, bis(2-pyridylmethyl)amino-3-propionic acid (Hpmpa) and bis(2-pyridylmethyl)amino-4-butyric acid (Hpmba), react with CuCl2 to give rise to the mononuclear complexes [Cu(Hpmpa)Cl]Cl · 2H2O (1) and [Cu(Hpmba)Cl2]· H2O (2). These complexes have been characterized by X-ray crystallography, spectroscopic and cyclic voltammetry. Crystal structure of (1) shows that the copper(II) ion has a distorted square-pyramidal geometry with the three nitrogen atoms of the Hpmpa ligand and one chloride anion occupying the basal plane and an oxygen atom from the carboxylate group coordinating the axial position. In (2), the coordination environment around the copper(II) ion reveals a distorted square-pyramids with three nitrogen atoms of the Hpmba ligand and one chloride anion that comprise the basal plane, whereas the apical position is filled by the chloride anion. Cyclic voltammetry of the complexes gives two one-electron waves corresponding to CuII/CuIII and CuIII/CuI processes. The electronic spectra and redox potentials of the complexes are influenced significantly by the N-pendant carboxylate groups.  相似文献   

3.
The reaction of CuCl2 · 2H2O and CdCl2 with di-(2-picolyl)sulfide (dps) leads to the formation of mononuclear copper(II) and binuclear cadmium(II) complexes, [Cu(dps)Cl2] · H2O (1) and [(dps)(Cl)CdII(μ-Cl)2CdII(Cl)(dps)] (2). The copper atom in (1) is coordinated to one sulfur and two nitrogen atoms from the dps ligand and two chlorides in a distorted square-pyramidal environment. Complex (2) has two distorted octahedra sharing the basal edge that contain the bridging chloro ligands, each of which resides at a center of inversion. Cyclic voltammetric data show that (1) undergoes two reversible one-electron waves corresponding to CuII/CuIII and CuII/CuI processes. However, cyclic voltammetry of (2) gives two irreversible reduced waves.  相似文献   

4.
The Gly‐His‐Lys (GHK) peptide and the Asp‐Ala‐His‐Lys (DAHK) sequences are naturally occurring high‐affinity copper(II) chelators found in the blood plasma and are hence of biological interest. A structural study of the copper complexes of these peptides was conducted in the solid state and in solution by determining their X‐ray structures, and by using a large range of spectroscopies, including EPR and HYSCORE (hyperfine sub‐level correlation), X‐ray absorption and 1H and 13C NMR spectroscopy. The results indicate that the structures of [CuII(DAHK)] in the solid state and in solution are similar and confirm the equatorial coordination sphere of NH2, two amidyl N and one imidazole N. Additionally, a water molecule is bound apically to CuII as revealed by the X‐ray structure. As reported previously in the literature, [CuII(GHK)], which exhibits a dimeric structure in the solid state, forms a monomeric complex in solution with three nitrogen ligands: NH2, amidyl and imidazole. The fourth equatorial site is occupied by a labile oxygen atom from a carboxylate ligand in the solid state. We probe that fourth position and study ternary complexes of [CuII(GHK)] with glycine or histidine. The CuII exchange reaction between different DAHK peptides is very slow, in contrast to [CuII(GHK)], in which the fast exchange was attributed to the presence of a [CuII(GHK)2] complex. The redox properties of [CuII(GHK)] and [CuII(DAHK)] were investigated by cyclic voltammetry and by measuring the ascorbate oxidation in the presence of molecular oxygen. The measurements indicate that both CuII complexes are inert under moderate redox potentials. In contrast to [CuII(DAHK)], [CuII(GHK)] could be reduced to CuI around ?0.62 V (versus AgCl/Ag) with subsequent release of the Cu ion. These complete analyses of structure and redox activity of those complexes gave new insights with biological impact and can serve as models for other more complicated CuII–peptide interactions.  相似文献   

5.
By reaction of CuCl2 with H4btc (H4btc = 1,2,4,5‐benzenetetracarboxylic acid) in mixed N,N‐dimethylformamide (DMF) and methanol solution, a new two‐dimensional (2‐D) copper(II) complex [Cu(btc)0.5(DMF)]n ( 1 ) based on the paddlewheel‐like [Cu2(‐CO2)4(DMF)2] building blocks has been synthesized, which is different from those previous Cu‐btc(II) coordination polymers obtained in water medium. Four carboxylate groups of (btc)4? anion in 1 consistently exhibit bidentate bridging coordination mode, affording an unusual coordination mode of (btc)4?. Further analysis indicates C–H···π weak interactions are the primary driving forces to assemble the 2‐D layers of 1 into a 3‐D packing structure.  相似文献   

6.
In the title compounds, {2,2′‐[2,2‐di­methyl‐1,3‐propane­diyl­bis­(nitrilo­methyl­idyne)]­diphenolato‐κ4N,N′,O,O′}nickel(II), [Ni(C19H20N2O2)], and {2,2′‐[2,2‐di­methyl‐1,3‐propane­diyl­bis­(nitrilo­methyl­idyne)]­diphenolato‐κ4N,N′,O,O′}copper(II), [Cu(C19H20N2O2)], the NiII and CuII atoms are coordinated by two iminic N and two phenolic O atoms of the N,N′‐bis­(salicyl­idene)‐2,2‐di­methyl‐1,3‐propane­diaminate (SALPD2?, C17H16N2O22?) ligand. The geometry of the coordination sphere is planar in the case of the NiII complex and distorted towards tetrahedral for the CuII complex. Both complexes have a cis configuration imposed by the chelate ligand. The dihedral angles between the N/Ni/O and N/Cu/O coordination planes are 17.20 (6) and 35.13 (7)°, respectively.  相似文献   

7.

In this study, a mononuclear CuL complex was prepared by the use of bis-N,N′-(salicylidene)-1, 3-propanediamine (LH2) and Cu2+ ion. NiCl2 and NiBr2 salt were treated with this complex in dioxanewater medium and two new complexes [(CuL)2NiCl2(H2O)2] and [(CuL)2NiBr2(H2O)2)] with Cu(II)–Ni(II)–Cu(II) nucleus structure were obtained. In addition to this bis-N,N′-(2-hydroxybenzyl)-1,3-diaminopropane (LHH2) was prepared by the reduction of LH2 with NaBH4 in MeOH medium. The treatment of this reduced complex with Cu2+ ion resulted a complex [(CuLH)2CuCl2] with a structure of Cu(II)–Cu(II)–Cu(II). The complexes prepared were characterized by the use of elemental analysis, IR spectroscopy, thermogravimetric and X-ray diffraction methods. The crystal structures of [(CuL)2NiBr2(H2O)2] (СIF file CCDC 1448402) and [(CuLH)2CuCl2] (СIF file CCDC 1448401) complexes were elucidated. It was found that halogen ions are coordinated to terminal Cu2+ ions which are in a distorted square pyramid coordination sphere. It was determined that the central Cu(II), which joins terminal square pyramidal Cu(II), was coordinated only by the phenolic oxygens of the ligand while the central Ni(II) was coordinated by two phenolic oxygens of the organic ligand and two water molecules. These complexes were investigated by XPS and it was found that the terminal and central Cu2+ ions were different in Cu(II)–Cu(II)–Cu(II) complex. Also, the thermal degradation of the CuLH complex unit was observed to exothermic in contrast to the expectations.

  相似文献   

8.
Six copper(II) complexes with N,O-donor ligand 2-methyl-2-(2-pyridyl)-1,3-propan-diol (H2ppdo) were synthesized and characterized. Treatment of CuCl2 or Cu(OTf)2 with H2ppdo led to the formation of bis(H2ppdo) monomers [Cu(H2ppdo)2][CuCl4] (1) and [Cu(H2ppdo)2](OTf)2 (2), respectively. Both 1 and 2 are comprised of the copper atom coordinated by two ligands in an axially-compressed tetragonal geometry with the pyridyl N atoms in the axial positions and the alcohol O atoms in the equatorial plane. The treatment of 1 or 2 with Et3N produced copper(II) complexes of varying nuclearity. Treatment of 1 with excess Et3N generated two binuclear Cu(II) clusters [Cu2(Hppdo)2Cl2] (3) and [Cu2(Hppdo)2Cl2(CH3OH)2] (4), where only one alcohol OH group per ligand has been deprotonated, while similar treatment of 2 with excess Et3N afforded the trimeric copper(II) species [Cu3(Hppdo)4](OTf)2 (5). The structures of 3 and 4 are similar, with alkoxo-O ligand atoms bridging between two square pyramidal copper atoms, and the alcohol-O ligand atoms either coordinating in the axial position in 3, or uncoordinated in 4. Treatment of CuCl2 with H2ppdo and Et3N afforded the trinuclear Cu(II) complex, [Cu3(Hppdo)4]Cl2 (6). Complexes 5 and 6 are made up of one square-planar copper sandwiched between two tetragonally distorted six-coordinate Cu(Hppdo)2 moieties, where the bridging alkoxo-O atoms link the copper atoms.  相似文献   

9.
The copper complex [CuCl2(TzHy)] has been synthesized and its crystal structure determined. The coordination complex contains polymeric [CuCl2(TzHy)]n chains in which the units are linked by μ‐chloro bridges. The chains run along the crystallographic c axis. The geometry around the copper(II) is best described as distorted square pyramidal. The equatorial positions are occupied by Cl(1) and Cl(2) ligands and one thiazolinic nitrogen atom and another hydrazinic nitrogen atom, from TzHy ligand. The axial position is occupied by the Cl(2b) ligand. The magnetic susceptibility measurements in the temperature range 4 – 290 K show a weak antiferromagnetic intrachain interactions (J = ?8.6 cm?1).  相似文献   

10.
In the polymeric title compound, [CuCl2(C6H6N4)]n, each CuII ion is five‐coordinated by four basal atoms (two N atoms from a 2,2′‐biimidazole mol­ecule and two Cl anions) and one axial Cl anion, in a distorted square‐pyramidal coordination geometry. Cl anions bridge the {Cu(C6H6N4)Cl} units into one‐dimensional linear chains, which are reinforced by π–π inter­actions. Adjacent linear chains are linked by N—H⋯Cl hydrogen bonds, resulting in a grid layer. The hydrogen‐bonding pattern can be described in graph‐set notation as C(9)R(9)R(14). This study extends our knowledge of the multifunctional properties of the 2,2′‐biimidazole ligand and of the coordination stereochemistry of copper(II).  相似文献   

11.
New Copper(I, II) Compounds Complexes of the type [CuII(N∩N)2][CuICl1+x]2x (N∩N = en, pn, 2-amino picoline) are prepared from Cu(N∩N)2Cl2 and copper(I) chloride. [CuII(enac)][CuICl2]2 — a complex with a macrocyclic cation — is obtained, by the reaction of Cuen2Cl2 in aqueous acetone. Diacetyl monoxime partially reduces copper(II) of Cu(NSMe)2Cl2 and in this way causes the formation of [Cu(NSMe)2][CuCl3] (NSMe = β-aminoethyl methylsulfide). On the other hand a template reaction of this oxime with Cu(NSMe)2 (ClO4)2 produces CuII(ONNSMe)(ClO4) (HONNSMe?CH3C(NOH)C(NCH2CH2SCH3)CH3), which shows a reduced paramagnetism. Basing on magnetic behaviour, i. r. and vis spectra the structure of the new compounds is discussed.  相似文献   

12.
Compounds containing copper(I) are of interest for their role in biological processes. The nature of short (< ∼3.2 Å) Cu...Cu contacts within these compounds has been debated, being either described as weakly attractive (bonding) `cuprophilic' interactions, or simply as short metal–metal distances constrained by ligand geometry or largely ionic in nature. The title three‐dimensional Cu+‐containing coordination polymer, [Cu3(C7H7N2O2)Cl2]n, was formed from the in situ reduction of CuCl2 in the presence of 3,5‐diaminobenzoic acid and KOH under hydrothermal conditions. Its complex crystal structure contains ten distinct CuI atoms, two of which lie on crystallographic inversion centres. The copper coordination geometries include near‐linear CuOCl and CuN2, T‐shaped CuOCl2 and distorted tetrahedral CuOCl3 groups. Each CuI atom is also associated with two adjacent metal atoms, with Cu...Cu distances varying from 2.7350 (14) to 3.2142 (13) Å; if all these are regarded as `cuprophilic' interactions, then infinite [01] zigzag chains of CuI atoms occur in the crystal. The structure is consolidated by N—H...Cl hydrogen bonds.  相似文献   

13.
A variety of new coordination compounds with transition-metal salts and the ligand trimethyl[1,2,4]triazolo[1,5-a]pyrimidine (abbreviated as tmtp) is described, together with several of their 3D crystal structures and spectroscopic and magnetic properties. The compounds were selected based on the coordination ability of the counterion, halide, nitrate, sulfate, thiocyanate and perchlorate. The formed coordination compounds and their coordination numbers were found to be strongly dependent on both the cation and the used counter-anion. The several compounds studied have the following structural formulae: [CuCl2(tmtp)2], [CuBr2(tmtp)2], [ZnBr2(tmtp)2], [Cu(NO3)2(tmtp)2], [CuSO4(tmtp)2]2(H2O)(MeOH), [Cu(H2O)(NCS)2(tmtp)2], [Zn(NCS)2(tmtp)2], [Cd(NCS)2(tmtp)2] and [M(H2O)2(tmtp)4](BF4)2, in which M = Co, Ni, Zn.The new coordination compounds have been further characterized by NMR, (far-)IR and LF spectra, as well as by C, H, N element analyses, and EPR spectra for the Cu(II) compounds. The coordination around the metal varies from 4 (Zn, Cu), via 5 (Cu) to 6 (for Co, Cu and Cd). The anions usually complete the coordination sphere; only the Co and Zn compounds with the tetrafluoridoborate anions have no coordinated anions, but water ligands complete the octahedral coordination sphere. In the 5-coordinated [Cu(H2O)(NCS)2(tmtp)2] water completes the square pyramid geometry.  相似文献   

14.
In the title complex, [CuCl2(C12H24S6)]n, the CuCl2 unit and the ligand lie on and about inversion centres, respectively. The coordination geometry at CuII is a tetragonally elongated octahedron with the equatorial positions occupied by two chlorides, Cu—Cl 2.2786 (12) Å, and two S donors, Cu—S 2.3710 (13) Å. The apical positions of the octahedron are defined by two S donors at distances of 2.8261 (14) Å from the metal. The macrocyclic ligand adopts a very puckered and distorted conformation. Eight of the 18 torsion angles are less than 90° and all S-donors are oriented exo to the ring.  相似文献   

15.
He  Yi  Kou  Hui-Zhong  Wang  Ru-Ji  Li  Yadong  Xiong  Ming 《Transition Metal Chemistry》2003,28(4):464-467
Two new CuII complexes, [Cu(Hambi)2(ClO4)2] and [Cu(Hambi)2(dca)2] (Hambi = 2-aminomethylbenzimidazole) have been prepared and characterized by X-ray diffraction, electronic paramagnetic resonance (e.p.r.) and i.r. analyses. Both complexes exhibit an elongated octahedral coordination environment with two Hambi ligands situated at the equatorial positions in a trans fashion [Cu—N bond distances range from 1.940(9) to 2.031(9) Å]. In the second complex, a new coordination mode, in which dicyanamide coordinates to copper(II) as a monodentate ligand with the amide nitrogen atom, was observed.  相似文献   

16.
A series of five chloride coordination compounds of diethyl (pyridin-4-ylmethyl)phosphate (4-pmOpe) ligand, i.e. [CuCl2(4-pmOpe)2], [NiCl2(4-pmOpe)4], [CoCl2(4-pmOpe)], [ZnCl2(4-pmOpe)2], and [CdCl2(4-pmOpe)2], was prepared and studied. Stoichiometry and stereochemistry of the compounds was confirmed by spectroscopic and magnetic studies as well as by elemental analyses. The 4-pmOpe ligand has a capacity to coordinate to metal ions by means of phosphoryl oxygen and/or nitrogen of pyridine atoms. In Cu(II), Ni(II), and Zn(II) compounds, 4-pmOpe adopts the monodentate coordination mode, bonding metal centers through the pyridine nitrogen atom only. On the contrary, in Co(II) and Cd(II) compounds, 4-pmOpe acts as N,O-bridging ligand forming polynuclear structures. Magnetic studies (1.8–300 K) indicate mononuclear structure of the Co(II) and Ni(II) compounds and suggest existence of a very weak exchange coupling between metal centers in crystal lattice.  相似文献   

17.
A new complex salt [4,7,13,16,21,24-hexaoxa-1,10-diazoniabicyclo[8.8.8]hexacosane bis[dichloro(thiocyanato)copper(II)], [H2(Crypt-222)][CuCl2(SCN)]2, is synthesized and studied by X-ray diffraction analysis. The crystals are monoclinic (space group C2/c, a = 14.603 Å, b = 8.330 Å, c = 25.091 Å, β = 100.76°, Z = 4). The structure is solved by a direct method and refined by the full-matrix least-squares method in the anisotropic approximation to R = 0.047 for 2943 independent reflections (CAD-4 automated diffractometer, λMoK α radiation). The Cu2+ cations and Cl? and SCN? anions form infinite polymeric chains of spiro-conjugated alternating centrosymmetric four-membered CuCl2Cu cycles and eight-membered Cu(SCN)2Cu cycles through coordination bonds. The coordination polyhedron of the Cu2+ cation is a distorted trigonal bipyramid. The [H2(Crypt-222)]2+ dication contains trifurcate N+-(…O)3 bonds on axis 2.  相似文献   

18.
An unexpected trinuclear Cu(II)–thiazolidine complex has been synthesized by mixing CuCl2·2H2O with the Schiff base ligand, 1-(((4,5-dihydrothiazol-2-yl)ethylidene)hydrazono)methyl)phenol L, in ethanol. Unexpectedly, the reaction proceeded via the hydrolysis of the Schiff base L, followed by cyclization to afford 3-methyl-5,6-dihydrothiazolo[3,2-c][1,2,3]triazole (La), then complexation with the Cu(II) salt, forming the trinuclear [Cu3(La)4(Cl)6] complex. The complex was characterized by means of FTIR spectra, elemental analysis, and X-ray crystallography. In the trinuclear [Cu3(La)4(Cl)6] complex, there are two crystallographically independent hexa- and penta-coordinated Cu(II) sites, where the thiazolidine ligand La units act as a monodentate ligand and a linker between the Cu(II) centers. The crystal packing of the [Cu3(La)4(Cl)6] complex is primarily affected by the weak non-covalent C-H∙∙∙Cl interactions. In accordance with Hirshfeld surface analysis, the Cl∙∙∙H, H∙∙∙H, S∙∙∙H, and N∙∙∙H percentages are 31.9%, 27.2%, 13.5%, and 9.9%, respectively. X-ray photoelectron spectroscopy confirmed the oxidation state of copper as Cu(II), as well as the presence of two different coordination environments around copper centers. The complex showed interesting antibacterial activity against the Gram-positive bacteria S. subtilis, with MIC = 9.7 µg/mL compared to MIC = 4.8 µg/mL for the control, gentamycin. Moreover, the Cu(II) complex showed an equal MIC (312.5 µg/mL) against C. albicans compared to ketoconazole. It also exhibits a very promising inhibitory activity against colon carcinoma (IC50 = 3.75 ± 0.43 µg/mL).  相似文献   

19.
Piperanol thiosemicarbazone (HL) has been interacted with Ag+, Co(II), Ni(II) or Cu(II) binary to produce [Ag(HL)]EtOH · NO3, [Ag2(L)(H2O)2]NO3, [Co(L)3], [Cu(L)(H2O)3(OAc)]H2O or [Ni(L)2] and template with Ag+ to form [Cu2Ag2(L)2(OH)2(H2O)4]NO3 and [NiAg(L)2(H2O)2]NO3. The prepared complexes are characterized by microanalysis, thermal, magnetic and spectral (IR, 1H NMR, ESR and electronic) studies. Ag+ plays an important role in the complex formation. The variation in coordination may be due to the presence of two different metal ions and the preparation conditions. The outside nitrate is investigated by IR spectra. The outer sphere solvents are detected by IR and thermal analysis. Ni(II) complexes are found diamagnetic having a square-planar geometry. Cu(II) is reduced by the ligand to Cu(I). The cobalt complex is found diamagnetic confirming an air oxidation of Co(II) to Co(III) having a low spin octahedral geometry. The ligand and its metal complexes are found reducing agents which decolorized KMnO4 solution in 2N H2SO4. CoNS and NiNS are the residual parts in the thermal decomposition of [Co(L)3] and [Ni(L)2].  相似文献   

20.
The dimeric title copper(II) complex, diaqua‐1κO,2κO‐bis[3,9‐dimethyl‐6‐(2‐pyridyl­methyl)‐4,8‐di­aza­undeca‐3,8‐di­ene‐2,10‐dione dioximato(1?)]‐1k4N2,N4,N8,N10;1:2κ5O2:N2,N4,N8,N10‐dicopper(II) diperchlorate, [Cu2(C17H24N5O2)2](ClO4)2, crys­tallizes with one Cu atom in a square‐pyramidal environment and the other Cu atom displaying a distorted octahedral coordination. In each case, the four N atoms in the core of the ligand (two imine and two oxime N atoms) form the base of the pyramid, with a water mol­ecule at an apex. The two parts of the dimer are linked by an interaction [2.869 (2) Å] between one of the Cu atoms and one of the oxime O atoms coordinated to the second Cu atom, and also by a hydrogen bond between the apical water mol­ecule on the second Cu atom and the pyridyl N atom from the coordination sphere of the first Cu atom. The pyridyl N atoms of the lariat arms are not coordinated to either of the Cu atoms. Thus, this potentially pentadentate ligand is only tetradentate when coordinated to CuII.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号