首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Appearance energies were measured for several types of [C3H7S]+ ions. From these appearance energy values the heats of formation of the ions were calculated. For the isomeric ions that could not be generated in the mass spectrometer, the heats of formation were estimated by means of the isodesmic substitution method. Transition state energies for the decomposition to C2H4 and [CH3S]+ along two pathways were determined from the appearance energies of these ions. Using the energy values, potential energy diagrams were constructed for the rearrangements and decompositions of the [C3H7S]+ ions. A supplementary 13C Clabelling experiment is described for the determination of the rearrangement pathway of [CH3CH2CH?SH]+ ions prior to decomposition.  相似文献   

2.
It is demonstrated by means of collisionally activated decomposition (CAD) that [C3H5O]+ originating from metastable [C4H8O] ions are either acylium [C2H5CO]+ (a) or hydroxycarbenium [CH2CHCHOH]+ (b). Butanone gives exclusively a but 2-methyl-2-propen-1-ol, 2-buten-1-ol, 3-buten-1-ol, butanal and 2-methylpropanal lead to ion b. Both structures a and b are produced from 3-buten-2-ol. These results are discussed in conjunction with experimental and calculated (MINDO/3) thermodynamic data.  相似文献   

3.
An energetic study of the production of [C7H8N]+ and [C6H7]+ fragment ions from o-toluidine and N-methylaniline is reported. The mechanisms for the formation of the ions are suggested. Metastable peaks associated with the formation and fragmentation of reactive [C7H8N]+ and [C6H7]+ ions were detected and kinetic energy released were determined. The results indicate that the [C7H8N]+ ion is formed at threshold from o-toluidine with an aminotropylium structure whereas for N-methylaniline the ion is formed with anN-phenylmethaniminium structure. [C6H7]+ ions are believed to be formed at threshold from the two precursors with a protonated benzene structure.  相似文献   

4.
Metastable ion spectra and deuterium labelling have been used to investigate a series of gaseous [C8H9]+ ions of isomeric structures. The similarity of the intensities of their metastable loss of hydrogen, acetylene and ethylene molecules and metastable reactions of specifically labelled ions, suggests that the [C8H9]+ reacting ions, formed initially with different structures, isomerise to a common structure or mixture of structures via deep-seated rearrangement reactions which render all hydrogen atoms equivalent. The isomerisation process involved is controlled by a conversion of a vinyl bond into an allyl-type bond, thus destroying the aromatic moiety.  相似文献   

5.
The MIKE spectra of amines RCH2NH2 containing more than five carbon atoms exhibit m/z 44 and m/z 58 peaks. The structures of these [C2H6N]+ and [C3H8N]+ ions have been established by collisional activation spectra. The results are in agreement with the fragmentation mechanisms previously proposed.  相似文献   

6.
[C2H3O]+ ions with the initial structures [CH3CO]+, and [CH2CHO]+ cannot be distinguished on the basis of their collisional activation spectra, demonstrating that these isomers interconvert at energies below their threshold for decomposition. Self-protonation of ketene leads to the [CH3CO]+ ion, while the [C2H3O]+ ion generated from glycerol most probably has the structure of an oxygen protonated ketene [CH2?C?OH]+.  相似文献   

7.
The effect of changes in the internal energy distribution of the fragmenting ion on the ratio of metastable ion intensities for two competing fragmentation reactions has been investigated both theoretically and experimentally. Model calculations have shown that if the competing reactions have significantly different activation energies the metastable intensity ratio does depend on the internal energy distribution although large changes are necessary before the ratio changes by more than a factor of two. Experimentally the metastable characteristics of [C3H7O]+ ions of nominal structures [CH3CH2O+?CH2] (I), [(CH3)2C?O+H] (II), [CH3CH2CH?O+H] (III) and [CH3O+?CHCH3] (IV) have been examined. For each structure the metastable characteristics are found to be distinctive and independent of changes in the internal energy distribution of the fragmenting ion where these changes result from altering the precursor of the [C3H7O]+ ions. It is suggested that these internal energy changes can be estimated from the fraction of [C3H7O]+ ions which fragment in the ion-source. It is concluded that structures I to IV represent stable and distinct ionic structures.  相似文献   

8.
Ab initio molecular orbital calculations have been carried out for 17 possible isomeric [C3H7O]+ structures. Optimized geometries have been obtained with a split-valence basis set and improved relative energies determined with polarization basis sets and with incorporation of electron correlation. The results agree well with available experimental data. In particular, (CH3)2COH+, CH3CH2CHOH+, CH3CHOCH3+, CH3CH2OCH2+, and have been confirmed as low-energy isomers. Six additional structures appear to be energetically accessible and to offer a reasonable prospect for experimental observation. These are CH2CHCH2OH2+, CH2C(CH3)OH2+, CH3CHCHOH2+, CH2CHOHCH3+, and .  相似文献   

9.
Mass spectra from collisionally activated dissociation (CAD) of [C2H3O]+ ions, including isotopically labeled analogs, provide further information on the isomers [CH3C?O+] (a), [CH2?C?O+H] (b), [+CH2CH?O] (c) and (d). Our data generally support the recent conclusions from theory by Radom and coworkers and from experiment by Terlouw, Holmes and coworkers. Most acetyl-containing molecular ions form a ions in high purity only at low energies, consistent with isomerization of higher energy molecular ions to form the more stable enol which dissociates to b. Isomer d, prepared from (CICH2)2CHOH, undergoes facile hydrogen scrambling, presumably through a degenerate 1,2-hydrogen shift. Theory suggests that c undergoes spontaneous isomerization to a and d; although [C2H3O]+ ions from BrCH2CHO appear to consist of a and ~15% d, the latter are formed without substantial hydrogen scrambling.  相似文献   

10.
Collisional activation spectra of [C8H8]+·, [C8H8]2+, [C6H6]+· and [C6H5]+ ions from fifteen different sources are reported. Decomposing [C8H8]+· ions of ten of these precursors isomerise to a mixture of mainly the cyclooctatetraene and, to a smaller extent, the styrene structure. Three additional structures are observed with [C8H8]+· ions from the remaining precursors. [C8H8]2+., [C8H8]+·, [C6H6]+· and [C6H5]+· ions mostly decompose from common structures although some exceptions are reported.  相似文献   

11.
The principal fragmentation reactions of metastable [C3H7S]+ ions are loss of H2S and C2H4. These reactions and the preceding isomerizations of [C3H7S]+ ions with six different initial structures were studied by means of labelling with 13C or D. From the results it is concluded that the loss of H2S and C2H4 both occur at least mainly from ions with the structure [CH3CH2CH? SH]+ or from ions with the same carbon sulfur skeleton, with the exception of the ions with the initial structure [CH3CH2S? CH2]+, which partly lose C2H4 without a preceding isomerization. For all ions, more than one reaction route leads to [CH3CH2CH?SH]+. It is concluded that the loss of H2S is at least mainly a 1,3-elimination from the [CH3CH2CH?SH]+ ions. Both decomposition reactions are preceded by extensive but incomplete hydrogen exchange.  相似文献   

12.
The problem of assigning structures to [C2H3O]+ ions produced from a wide variety of precursor molecules has been readdressed. The identification of the acetyl cation, \documentclass{article}\pagestyle{empty}\begin{document}$ {\rm{CH}}_{\rm{3}} \mathop {\rm{C}}\limits^{\rm{ + }} = {\rm{O}} $\end{document}, from metastable peak characteristics and collisional activation mass spectra appears to be straightforward. The structure \documentclass{article}\pagestyle{empty}\begin{document}$ {\rm{CH}}_{\rm{2}} = \mathop {\rm{C}}\limits^{\rm{ + }} - {\rm{OH}} $\end{document} is also known to exist as a stable ion. A third ion, whose structure may be represented as \documentclass{article}\pagestyle{empty}\begin{document}$ \mathop {\rm{C}}\limits^{\rm{ + }} {\rm{H}}_{\rm{2}} {\rm{CHO}} $\end{document} or has also been characterized.  相似文献   

13.
The unimolecular metastable and collision-induced fragmentation reactions of [C3H7O]+ ions produced by gas-phase protonation of acetone, propanal, propylene oxide, oxetan and allyl alcohol have been studied. The CID studies show that protonation of acetone and allyl alcohol yield different stable ions with distinct structures while protonation of propanal or propylene oxide yield [C3H7O]+ ions of the same structure. Protonated oxetan rearranges less readily to give the same structure(s) as protonated propanal and propylene oxide. The [C3H7O]+ ions fragmenting as metastable ions after formation by CI have a higher internal energy than the same ions fragmenting after formation by EI. Deuteronation of the C3H6O isomers using CD4 reagent gas shows that loss of C2H3D proceeds by a different mechanism than loss of C2H4. The results are discussed in terms of potential energy profile for the [C3H7O]+˙ system proposed earlier.  相似文献   

14.
The structures of gas-phase [C4H6O] radical cations and their daughter ions of composition [C2H2O] and [C3H6] were investigated by using collisionally activated dissociation, metastable ion measurement, kinetic energy release and collisional ionization tandem mass spectrometric techniques. Electron ionization (70 eV) of ethoxyacetylene, methyl vinyl ketone, crotonaldehyde and 1-methoxyallene yields stable [C4H6O] ions, whereas the cyclic C4H6O compounds undergo ring opening to stable distonic ions. The structures of [C2H3O] ions produced by 70-eV ionization of several C4H6O compounds are identical with that of the ketene radical cation. The [C3H6] ions generated from crotonaldehyde, methacrylaldehyde, and cyclopropanecarboxaldehyde have structures similar to that of the propene radical cations, whereas those ions generated from the remainder of the [C4H6O] ions studied here produced a mixed population of cyclopropane and propene radical cations.  相似文献   

15.
Three [C3H3O]+ ion structures have been characterized. The most stable of these is \documentclass{article}\pagestyle{empty}\begin{document}$ {\rm CH}_{\rm 2} = {\rm CH} - \mathop {\rm C}\limits^ + = {\rm O} $\end{document} its heat of formation ΔHf was measured as 749±5 kJ mol?1. In the μs time frame this ion fragments exclusively by loss of CO, a process which also dominates its collisional activation mass spectrum. The other stable [C3H3O]+ structures, \documentclass{article}\pagestyle{empty}\begin{document}$ {\rm CH}\equiv \mathop {\rm C}\limits^ + - {\rm CHOH} $\end{document} and \documentclass{article}\pagestyle{empty}\begin{document}$ {\rm CH}_{\rm 2} = {\rm C} = \mathop {\rm C}\limits^{\rm + } - {\rm OH}, $\end{document}, were generated from some acetylenic and allenic precursor ions; their heats of formation were estimated to be 830 and 880 kJ mol?1 respectively. The former ion was also produced by the gas phase protonation of propynal. These ions show loss of C2H2 and CO in both their metastable ion and collisional activation mass spectra. The broad Gaussian-type metastable peak for the loss of CO was shown to consist of two components corresponding to gragmentations having different activation energies.  相似文献   

16.
Collisional activation spectra have identified (i) as Stable ion structures. Evidence is presented for a variety of pathway for their formation, including anchimeric assistance and hydrogen migration in less stable isomers. The fragmentation behavior of a number of [CnH2n+1O]+ isomers of n = 2 to 5 shows that extensive rearrangements are common, but that some reactions appear to be useful for ion structure elucidation. One reaction identified is unusual in that it represents the decomposition of an even-electron ion to yied an odd-electron ion product in significant abundance.  相似文献   

17.
gas phase has been established. This conclusion could be derived from a careful study of their collisional activation spectra, which show minor but characteristic differences. The ions studied were generated from various precursor ions in single or multiple fragmentation processes as well as via ion-molecule reactions. Their heats of formation vary from 925 to 1085 kJ mol?1 according to MINDO/3 or from 925 to 1050 kJ mol?1 according to MNDO calculations.  相似文献   

18.
From a comparison of the metastable ion bundance ratios for loss of C2H4 and H2S from [C3H7S]+ ions in a series of alkyl thio ethers and thiols it was concluded that in most compunds these ion s isomerize to a common structure prior to decomposition in the first field free region. The mechanism for C2H4 loss from the [C3H7S]+ ion gen erated from CH3SCH2CH3 was investigated in detail using 13C and 2H labelling. A rearrangement with formation of a cyclic intermediate prior to the decompistion reaction is proposed. The fragmentation is preceded by extensive hydrogen scrabling. The carbon atoms of the expelled C2H4 molecule are those of the CH2?CH3 moiety.  相似文献   

19.
The proton transfer equilibrium reactions involving 3-penten-2-one, 3-methyl-3-buten-2-one, crotonic acid and methacrylic acid were carried out in an ion cyclotron resonance (ICR) spectrometer. The semiempirical method MNDO, used to estimate the heats of formation for 14 protonated [C5H9O]+ and [C4H7O2]+ ions and the energetic aspect of the fragmentations of metastable [C6H12O]+. and [C6H12O2]+. ions, leads to the conclusion that the ions corresponding to protonation at the carbonyl oxygen are the most stable. Thus the experimentally determined heats of formation of protonated olefinic carbonyl compounds can be attributed to the following structures: [CH3COHCHCHCH3]+ (δHf = 490 KJ mol?1), [CH3COHC(CH3)CH2]+ (δHf = 502 KJ mol?1), [HOCOHCHCHCH3]+ (δHf = 330 KJ mol?1) and [HOCOHC(CH3)CH2]+ (δHf = 336 KJ mol?1).  相似文献   

20.
The formation of [CH2OH]+. by fragmentation of [C3H7O]+. ions in the electron-impact mass spectra of 2-methyl-2-propanol and 2-propanol has been investigated using 13C labeling, deuterium labeling and metastable studies. The similar fragmentation reaction in the chemical ionization mass spectrum of acetone has been studied. It is concluded that the fragmentation reaction does not involve complete randomization of the carbon atoms and therefore does not proceed through formation of a hydroxylated cyclopropane intermediate. Alternative mechanisms are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号