首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ab initio molecular-orbital theory has been used to study the 1,3-sigmatropic hydrogen rearrangements: propene → propene, formic acic → formic acid, and vinyl alcohol → acetaldehyde. Fully optimized structures of stable molecules and transition states have been determined using gradient procedures and the 4-31G basis set. Improved energies have been obtained using a variety of techniques with basis sets up to the size of double-ζ plus polarization (DZP ) and electron correlation up to the CEPA /DZP level. Although both polarization functions and electron correlation lead to a lowering of the calculated barriers, the values remain substantial for all three rearrangements.  相似文献   

2.
Harmonic force fields have been calculated for the planar hydrogen-bonded ring conformer of β-hydroxyacrolein, cCc, which is the most stable, and the chain conformer, cCt, generated by 180° rotation of O? H about the C? O bond axis. The equilibrium structure obtained using the 4-31 G basis set with full geometry optimization was employed in each case. Selected force constants for the bonds directly concerned in the formation of the ring from the chain structure, and the increments in going from the one to the other, are compared with the values for the corresponding conformers of performic and formic acids. As the ring size increases from four in trans-formic acid, to five in ciscis-performic acid and to six in the cCc conformer of β-hydroxyacrolein there is a successive increase in the mechanical strength of the hydrogen-bridging unit. The energy changes for the chain → ring conversion do not follow this progression: performic acid is out of order. But, since a force constant is a localized bond property, whereas the energy changes are determined not only by interactions specific to the hydrogendonor and hydrogen-acceptor groups but also by interactions involving more distant parts of the molecule, the force constants for the bonds directly concerned in the formation of the hydrogen bridge provide a less ambiguous basis for comparing the strength of the intramolecular hydrogen bonding.  相似文献   

3.
The transition structures (TSs) for chlorine 1,7-shift and 1,5-shift in 1,7,7-trichlorocycloheptatriene (1) and those of chlorine 1,5-shifts in 1,5,5-trichlorocyclopentadiene (3) and 1,2,5-trichloro-1,3-pentadiene (5) derivatives have been located with density functional theory (DFT) at the Becke3LYP/6-311G [and Becke3LYP/6-311+G] level. The calculational results were compared with those for corresponding hydrogen shifts in nonsubstituted molecules (cycloheptatriene (2), cyclopentadiene (4), and 1,3-pentadiene (6)). The following points were clarified: (1) The activation energy (Delta E(++)) for chlorine 1,7-shift in 1 was evaluated to be only +50.1 [+49.2] kJ/mol, which is smaller than that (+69.9 [+68.3]) for a 1,5-shift, supporting the theory that the conversion between two equivalent A and A' proceeds through a TS for direct chlorine 1,7-shift (Figure 1), rather than through a TS for a 1,5-shift (Figure 2). (2) The considerable amount of charge separation between a migrating chlorine atom (Cl(m)) and a seven-membered ring (-0.53 and +0.47 for Merz-Singh-Kollman scheme) occurs in a chlorine 1,7-shift, which is in good contrast to the result that the migrating hydrogen atom (H(m)) for a 1,7-shift in cycloheptatriene (2) carries almost no charge (Figure 3). This large charge separation can stabilize the TS for the chlorine 1,7-shift pathway. (3) The Delta E(++) values for suprafacial hydrogen 1,7-shift in 2 are quite large (+288.0 [+284.8] kJ/mol), much larger than that (+166.8 [+167.0]) for a 1,5-shift in 4 which is orbital symmetrically allowed (Figure 3). The calculation suggests that the chlorine 1,7-shift in 1 occurs easily at room temperature (actually observed experimentally) by proceeding via concerted suprafacial 1,7-shift through the zwitterionic TS with the significant assistance of Coulomb interaction between charged fragments (negatively charged chlorine atom and positively charged tropylium ring), rather than via a suprafacial 1,5-sigmatropic pathway. Other cases studied in this paper showed usual results predicted by orbital symmetrical consideration.  相似文献   

4.
3-21G transition structures for 1,5-sigmatropic hydrogen shifts of 1,3-pentadiene and cyclopentadiene have been located. The CHC angles in the transition structures are 130° and 68°, respectively. The difference in calculated activation energies for the two reactions agrees with the experimental difference.  相似文献   

5.
Isocyanates and isothiocyanates of the type RX-NCY (X and Y = O or S) and the isomeric nitrile oxides and nitrile sulfides RY-CNX are highly reactive compounds. A number of potential 1,4-shifts of substituent groups of the type R-Y-CNX → R-X-N═C═Y, 1,3-shifts R-C(═Y)-N═X → R-X-N═C═Y, and 1,2-shifts R-C(═Y)-N═X → R-Y-CNX have been evaluated computationally. The results obtained for the relatively new functional MPW1K and the well-established B3LYP, together with a triple-ζ quality basis set, are very similar. The 1,3- and 1,4-halogen shifts in the title compounds are usually highly exothermic and possess low activation barriers. 1,3-Aryl shifts are feasible for for 5e → 6e (Ar-CO-NSO(2) → Ar-SO(2)-NCO) with activation barriers of less than 40 kcal/mol. Additionally, several 1,3- and 1,4-hydrogen shifts and the 1,4-methyl-shift in methoxynitrile sulfide MeO-CNS to methylsulfenyl isocyanate MeS-NCO (4c → 6c) are potentially feasible. The 1,2-shift reactions 4b → 5b (HO-NCS → H-CS-NO) and 4c → 5c (Ar-O-CNS→ Ar-CO-NS) are good candidates for experimental observation with activation energies around 30 kcal/mol.  相似文献   

6.
1,3,5,5-Tetramethylcyclohexa-1,3-diene, specifically deuterated in all positions except the gem.-dimethyl groups ( 11 ), was synthesized and found to undergo a rearrangement in the gas phase at 560°, which leads to a statistical distribution of the 6 hydrogen atoms to all 16 positions. This shows that the title compound ( 2 ) automerizes under these conditions and that the reaction proceeds via a series of ring openings (to 5 ) followed by degenerate [1,7]-H-shifts and rig closures (back to 2 ) rather than via [1,5]-CH3-shifts. It is suggested that the previously studied rearrangement of 5,5-dimethylcyclohexa-1,3-diene ( 1 ) to 1,5-dimethylcyclohexa-1,3-diene ( 3 ) takes its course by the same reaction pathway.  相似文献   

7.
High-level ab initio molecular orbital calculations, using the G2(MP2,SVP) theory (and semiempirical methods) have been used to examine several 1,3- and 1,5-chlorine migrations. It is found that the interaction of chlorine lone pair electrons with a low-lying LUMO accelerates the Cl shift dramatically (lone pair-LUMO-mediated pericyclic reaction). The activation barriers for the 1,3-migration in chloro oxo ketene 1 (Cl(C=O)CH=C=O) and the 1,5-migration in (2-(chlorocarbonyl)vinyl)ketene 2 (Cl(C=O)CH=CHCH=C=O) are only 53 and 61 kJ mol(-)(1), respectively, compared to the 216 and 173 kJ mol(-)(1) barriers for the corresponding unassisted 1,3- and 1,5-sigmatropic shifts of Cl in 3-chloro-1-propene and 5-chloro-1,3-pentadiene. The transition structures for 1 and 2 reveal that migration of the chlorine atoms takes place in the molecular planes. The 1,5-chlorine shift in 6-chlorocyclohexa-2,4-dienone (3) has a significantly higher barrier due to a lack of appropriate orbital interaction. The related 1,3-shift in the (chlorocarbonyl)imine-alpha-chloro isocyanate system is also dramatically accelerated compared with conventional pericyclic 1,3-Cl migration.  相似文献   

8.
The high-resolution carbon 1s photoelectron spectrum of trans-1,3-pentadiene has been resolved into contributions from the five inequivalent carbon atoms, and carbon 1s ionization energies have been assigned to each of these atoms. Spectra have also been measured for propene and 1,3-butadiene at better resolution than has previously been available. The ionization energies for the sp2 carbons are found to correlate well with activation energies for electrophilic addition and with proton affinities. Comparing the results for 1,3-pentadiene with those for ethene, propene, and 1,3-butadiene as well as with results of theoretical calculations makes it is possible to assess the effect of the terminal methyl group in 1,3-pentadiene. As in propene, the methyl group contributes electrons to the beta carbon through the pi system. In addition, there is a significant (though smaller) contribution from the methyl group to the terminal (delta) CH2 carbon, also through the pi system. Most of the effect of the methyl group is present in the ground-state molecule. There are only relatively small contributions from the methyl group to the ionization energies from redistribution of charge in the pi system in response to the removal of a core electron. In addition to these specific effects, there is an overall decrease in average ionization energy as the size of the molecule increases as well as effects that are specific to the conjugated systems in 1,3-butadiene and 1,3-pentadiene. The results provide insight into the reactivity and regioselectivity of conjugated dienes.  相似文献   

9.
Aiming to improve our understanding of the stability of radicals containing the allylic moiety, carbon-hydrogen bond dissociation enthalpies (BDEs) in propene, isobutene, 1-butene, (E)-2-butene, 3-metylbut-1-ene, (E)-2-pentene, (E)-1,3-pentadiene, 1,4-pentadiene, cyclohexene, 1,3-cyclohexadiene, and 1,4-cyclohexadiene have been determined by quantum chemistry calculations. The BDEs in cyclohexene, 1,3-cyclohexadiene, and 1,4-cyclohexadiene have also been obtained by time-resolved photoacoustic calorimetry. The theoretical study involved a DFT method as well as ab initio complete basis-set approaches, including the composite CBS-Q and CBS-QB3 procedures, and basis-set extrapolated coupled-cluster calculations (CCSD(T)). By taking the C(sp3)-H BDE in propene as a reference, we have concluded that one methyl group bonded to C3 in propene (i.e., 1-butene) leads to a decrease of 12 kJ mol(-1) and that a second methyl group bonded to C3 (3-methylbut-1-ene) further decreases the BDE by 8 kJ mol(-1). When the methyl group is bonded to C2 in propene (isobutene), an increase of 7 kJ mol(-1) is observed. Finally, a methyl group bonded to C1 in propene (2-butene) has essentially no effect (-1 kJ mol(-1)). While this trend can be rationalized in terms of stabilization of the corresponding radical (through hyperconjugation and pi-delocalization), the BDE values observed for the dienes can only be understood by considering the thermodynamic stabilities of the parent compounds.  相似文献   

10.
Olefin-diene copolymerizations in the presence of C2 symmetric zirconocene rac-[CH2(3-tert-butyl-1-indenyl)2]ZrCl2/MAO catalytic system have been reported and rationalized by experimental and molecular modeling studies. Ethene gives 1,2-cyclopropane and 1,2-cyclopentane, 1,3-cyclobutane, and 1,3-cyclopentane units in copolymerization with 1,3-butadiene, 1,4-pentadiene, and 1,5-hexadiene, respectively. Propene-1,3-butadiene copolymerizations lead to 1,2 and 1,4 butadiene units and to a low amount of 1,2-cyclopropane units.  相似文献   

11.
A quantitative procedure has been developed for characterizing the complete microstructure of polymers of 1,3-pentadiene, including the tacticity of any crystalline component. This can be accomplished by a combination of infrared spectroscopy, X-ray crystallinity, and 300-MHz NMR spectroscopy. A series of high structural purity polymers were synthesized with a series of previously unreported mixed microstructures. These samples were characterized by using the three techniques mentioned, including the previously unreported 300-MHz NMR data. With those results a 60-MHz NMR/IR method of spectroscopy was developed to determine the composition of poly(1,3-pentadiene)s in terms of percent cis-1,2-, cis-1,4-, trans-1,4-, and 3,4-pentadiene units.  相似文献   

12.
The semiempirical MINDO/3 method has been used to study sigmatropic [1,3] shifts in propene, [1,5] shifts in pentadiene and [1,7] shifts in heptatriene, occurring in the suprafacial and antarafacial way. Hydrogen, fluorine and methyl (with retention or inversion of configuration) were taken as the shifting goups. For the [1,3] shifts some STO-3G and 4-31G calculations have also been performed. Good correspondence has been obtained with the stereoselectivity predictions of the Woodward-Hoffmann theory. The activation energy for the allowed reactions is 8–21 kcalmol lower than the value for the forbidden modes. The shift of a F atom proceeds via an inversion-type mechanism.  相似文献   

13.
Williams DA  Schenk GH 《Talanta》1973,20(11):1085-1096
An indirect spectrophotometric method, based on the rapid Diels-Alder reaction between cisoid 1,3-dienes and tetracyanoethylene (TCNE) and the destruction of an aromatic-TCNE pi-complex, was developed to determine eleven 1,3-dienes in the 0.05-1.00 x 10(-3)M range. These dienes were: cyclopentadiene; 1,3-cyclohexadiene; trans-1,3-pentadiene; 2,4-dimethyl-1,3-pentadiene; trans-2-methyl-1,3-pentadiene; 2-methyl-1,3-butadiene; 9-methylanthracene; 9,10-dimethylanthracene; 1,6-diphenyl-1,3,5-hexatriene; 2,3-dimethyl-1,3-butadiene; and 1,4-diphenyl-1,3-butadiene. Three 1,3-dienes were determined in the 0.05-1 x 10(-4)M range: cyclopentadiene, trans-2-methyl-1,3-pentadiene, and anthracene. The limit of detection for cyclopentadiene in carbon tetrachloride solutions is 0.11 microg/ml. Fourteen 1,3-dienes were found to form stable pi-complexes and could not be determined by the proposed method. For these 1,3-dienes, the spectra of some of the complexes are reported; in addition, relative equilibrium constants for the pi-complexes of 2,5-dimethyl-2,4-hexadiene, cis-1,3-pentadiene, 4-methyl-1,3-pentadiene, and 1,3-cyclo-octadiene were estimated. An explanation of the transient colour in the 1,3-diene-TCNE Diels-Alder reaction is suggested.  相似文献   

14.
The effects of one or two phenyl substituents on the activation enthalpy for a 1,5-hydrogen shift in 3-(Z)-1,3-pentadiene (1) and on the geometry of the transition structure (TS) have been investigated by B3LYP/6-31G calculations. The phenyl-substituent effects on the experimentally measured activation enthalpies are predicted to be sizable, spanning a range of nearly 10 kcal/mol. However, if differences between steric effects in the transoid isomers of the reactants are factored out by comparing the activation enthalpies in the cisoid conformers, the electronic components of the phenyl-substituent effects on both the barrier heights and the TS geometries are found to be quite modest in size. Unlike the TS in the Cope rearrangement, the TS for a 1,5-hydrogen shift in 1 is not highly variable in nature, and the reason the 1,5-hydrogen shift TS is not chameleonic is discussed.  相似文献   

15.
Satu Silver  Reko Leino 《Tetrahedron》2006,62(40):9417-9422
The equilibrium profiles for [1,5]-silatropic shifts in a series of 1,3-/1,1-disilyl substituted indenes were studied by NMR and computational methods based on density functional theory. Both methods indicate higher activation parameters for the [1,5]-shifts than observed in monosilyl substituted indene analogues.  相似文献   

16.
Copolymerization of styrene with (Z)-1,3-pentadiene affords copolymers mostly containing 1,2 pentadiene units. Both the styrene and the pentadiene units are in syndiotactic arrangement but the comonomer sequence distribution is far from bernoullian. Interestingly, the behavior of (Z)-1,3-pentadiene does not change much when polymerization temperature raises from −20 to +20°C, notwithstanding that (Z)-1,3-pentadiene affords a 1,2-syndiotactic homopolymer at −20°C but a prevailingly 1,4 cis homopolymer at +20°C. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35 : 2697–2702, 1997  相似文献   

17.
[reaction: see text] Calculations of the activation barrier for the 1,3-shifts of substituents X in alpha-imidoylketenes 1 (HN=C(X)-CH=C=O), which interconverts them with alpha-oxoketenimines 3 (HN=C=CH-C(X)=O) via a four-membered cyclic transition state TS2 have been performed at the B3LYP/6-311+G(3df,2p)//B3LYP/6-31G* level. Substituents with accessible lone pairs have the lowest activation barriers for the 1,3-shift (halogens, OR, NR2). The corresponding activation barriers for the alpha-oxoketene-alpha-oxoketene rearrangement of 4 via TS5 are generally lower by 1-30 kJ/mol. A polar medium (acetonitrile, epsilon = 36.64) was simulated using the polarizable continuum (PCM) solvation model. The effect of the solvent field is a reduction of the activation barrier by an average of 12 kJ/mol. In the cases of 1,3-shifts of amino and dimethylamino groups, the stabilization of the transition state TS2 in a solvent field is so large that it becomes an intermediate, Int2, flanked by transition states (TS2' and TS2') that are due primarily to internal rotation of the amine functions, and secondarily to the 1,3-bonding interaction. In the case of the alpha-oxoketene-alpha-oxoketene rearrangement of 4, there is a corresponding intermediate Int5 for the 1,3-amine shift already in the gas phase.  相似文献   

18.
It has been confirmed by 1H and 13C NMR spectroscopies that Sn(σ-C7H7)Ph3 undergoes either 1,4- or 1,5-shifts of the SnPh3 moiety around the cycloheptatrienyl ring with ΔH3 = 13.8 ± 0.4 kcal mol?1, ΔS3 = ?5.6 ± 1.2 cal mol?1 deg?1, and ΔG3300 = 15.44 ± 0.14 kcal mol?1. Similarly, (σ-5-cyclohepta-1,3-dienyl)triphenyltin undergoes 1,5-shifts with ΔH3 = 12.4 ± 0.6 kcal mol?1, ΔS3 = ?11.2 ± 1.8 cal mol?1 deg?1, and ΔG3300 = 15.76 ± 0.13 kcal mol?1. It is therefore probable that Sn(σ-5-C5H5)R3 and Sn(σ-3-indenyl)R3 do not undergo 1,2-shifts as previously suggested but really undergo 1,5-shifts.  相似文献   

19.
The acyclic 1,5-dienyl hydrogen shift is accelerated by radical-stabilizing phenyl substituents without regard to the type of position occupied in the 1,3(Z)-pentadiene system. 1-Phenyl-5-p-tolyl-1,3(Z)-pentadiene has a corrected energy of activation 5.8 kcal mol(-)(1) lower than that of the parent, while the 2- and 3-phenyl analogues, examined in cyclic systems specifically designed to obviate the otherwise general need for a thermochemical correction to the immediately precursory s-cis conformation, reveal stabilizing effects of 3.6 and 3.4 kcal mol(-)(1), respectively. These relatively small effects are consistent with a chameleonic conceptual scheme for the transition region.  相似文献   

20.
The fragmentation pathways of nineteen 1,3a,5-trisubstituted 3a,4,5,11-tetrahydro- 1,2,4-oxadiazolo[5,4-d][1,5]benzothiazepines have been studied with the aid of mass-analyzed ion kinetic energy spectrometry and exact mass measurements using fast-atom bombardment ionization. All compounds show a tendency to eliminate a neutral propene, or substituted or unsubstituted styrene, from the thiazepine ring to yield 1,2,4-oxadiazolo[5,4-b][1,3]benzothiazole ions, and further undergo reverse 1,3-dipolar cycloadditions to give benzothiazole ions. The formation of stable conjugated fused tetracyclic systems, substituted 1,2,4-oxadiazolo[5,4-f]phenanthridine ions, was also observed. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号