首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Transition Metal Complexes of the Hexamethyl-trisila-tetraphospha-nortricyclene P4 (Sime 2) 3 P4(Sime2)3 1 reacts with Mo(CO)6, Cr(CO)5THF, and Mn(η-C5H5)(CO)2THF to give crystalline complexes in which 1 functions as a monodentate ligand. In each compound one phophorus atom of the cyclotriphosphane ring coordinates to the metal atom. Using Mn(η-C5H5)(CO)2THF, two different P atoms of the P3 Cr(CO)4 norbornadiene and 1 react, yielding the dimeric, red, crystalline compound (CO) 4Cr[μ-P4(Sime2)3]2Cr(CO)4. In this complex the two molecules of 1 are both bonded by two P atoms of the P 3 ring to the two Cr(CO)4 Units, forming a six-memered (CrP2)2ring.  相似文献   

2.
The Structures of the Heptahetero-Nortricyclenes P7(Sime3)3 and P4(Sime2)3 Tris(trimethylsilyl)heptaphospha-nortricyclene P7(Sime3)3 1 and Hexamethyl-trisila-tetraphospha-nortricyclene P4Si3me6 2 are structural analogons to the hetero-nortricyclenes P and P4S3. 1 crystallizes in the space group P21 with a = 965.7 pm, b = 1746.5 pm, c = 693.3 pm, β = 99.61° and Z = 2 formula units. In the P7 system tge P? P bond lengths differ functionally, namely 221.4 pm in the three-membered ring, 219.2 pm at the ring atoms and 217.9 pm at the bridgehead atom. The P? Si and Si? C bond lengths are 228.8 pm and 187.8 pm respectively. 2 crystallizes in the space group R3 with aR = 1129.3 pm, αR = 50.01° (hexagonal axes: a = 954.7 pm, c = 2956.9 pm) and Z = 2 formula units. In the P4Si3 systems the bond lengths are P? P = 220.2 pm, P? Si = 228.3 pm and 224.7 pm (to the bridgehead atom). The Si? C bond lengths are 187.3 pm. The structures are discussed with related compounds.  相似文献   

3.
Investigations Concerning the Metallation of the Cyclotetraphosphanes P4(Cme3)3(Sime3), P4(Cme3)2(Sime3)2, and P4(Sime3)4 The reaction of white phosphorus with LiCme3 and me3SiCl yields P4(Sime3)(Cme3)3 1 . With n-buLi this crystalline cyclotetraphosphane forms the crystalline LiP4(Cme3)3. In the same manner, n-buLi, with trans-P4(Sime3)2(Cme3)2 2 to yields LiP4(Sime3)(Cme3)2, which in contrast to LiP4(Cme3)3 decomposes within a few hours yielding P(Sime3)2n-bu 6 , P(Sime3)3 8 , LiP(Sime3)2 9 and also the cyclic compounds P4(Sime3)(Cme3)3 10 , LiP4(Cme3)3 11 and LiP3(Cme3)2 12 . The composition of the product mixture depends on the molar ratio of 2 to LiC4H9. At a molar ratio of 1:1 11 and 12 are not jet observed. At molar ratios of 1:1.5 and 1:2 P(Sime3)3 is not found. The amount of 11 and 12 grows with increasing concentration of n-buLi. On addition of n-buLi the solution of P4(Sime3)4 immediately turns red. Li3P7 and Li2P7(Sime3) (among others) are formed so fast that the first intermediates in the lithiation sequence so far could not be elucidated. These results demonstrate clearly that replacement of two me3Si groups in P4(Sime3)4 by two me3C groups excludes the rearrangement of LiP4(Sime3)(Cme3)2 to a P7-molecule.  相似文献   

4.
Crystal Structure of Thallium(I) Hexaiodomercurate(II), Tl4HgI6 In the structure of the tetragonal Tl4HgI6 (a = 944.6 pm, c = 926.0 pm, Z = 2, space group P 4/mnc) isolated, in c-direction compressed HgI6 octahedra are situated. The mercury atoms are disordered; they occupy statistically 4 positions in the equatorial plane of the octahedra in such a manner that strongly deformed HgI4 tetrahedra are produced. The thallium atoms are eightfold coordinated like a bicapped trigonal prism. The relationship between the Tl4HgI6 structure and the cubical K2PtCl6 type will be discussed.  相似文献   

5.
Hexamethyl-trisila-tetraphospha-nortricyclene, P4 Sime23 Reaction of white phosphorus with Na/K alloy and subsequent treatment with me2SiCl2 (me = CH3) yields crystalline P4(Sime2)3 (m. p. 159–160°C) along with polymeric silylphosphanes. The structure is derived from 31P-n.m.r.and mass spectra and turns out to be analogous to P4S3.  相似文献   

6.
Zusammenfassung Die Struktur einer ternären Phase mit der Idealzusammensetzung Co4Hf2P3 wurde röntgenographisch mittels Einkristallmethoden bestimmt und verfeinert. Die Gitterparameter der hexagonalen Elementarzelle sinda=12,0559 undc=3,6249 Å, die Raumgruppe ist . Die Phase ist strukturell mit Fe2P und Fe12Zr2P7 verwandt.
The structure of a ternary phase with the ideal composition Co4Hf2P3 has been determined and refined by means of singlecrystal X-ray methods. The cell dimensions of the hexagonal unit cell are found to be:a=12,0559 andc=3,6249 Å, the space group is . The phase is structurally related to Fe2P and Fe12Zr2P7.


Mit 1 Abbildung  相似文献   

7.
Crystal Structure of SrHg(SCN)4 · 3 H2O SrHg(SCN)4 · 3 H2O is orthorhombic, space group Pcca, with a = 19.476(7), b = 8.150(1), c = 8.991(3) Å, V = 1427.1 Å3, Z = 4, dc = 2.67 g · cm?3, μ(AgKα) = 77.95 cm?1. The salt consists of nearly tetrahedral Hg(SCN)4 groups, Sr has a tricapped trigonal prismatic coordination: four N and five O atoms. The thiocyanate groups form end-to-end bridges and connect the Hg and Sr coordination polyhedra.  相似文献   

8.
The crystal structure of the new phase Cu7(OH)6(TeO3)2(SO4)2 [a=7.389 (1),b=7.638 (1),c=7.662 (2) Å, =75.17 (1), =75.90 (1), =84.19 (1)°;Z=1] was determined by direct methods andFourier summations from X-ray intensities, and was refined in space group P -C i 1 toR=0.039. As usual, the Cu(II) atoms are coordinated to four O atoms forming approximately a square with average Cu-O=1.96 (3) Å; one or two more distant O neighbours complete the coordination. The shape of the TeO3 group is a rather clear-cut trigonal pyramid. A disorder was found for the SO4 tetrahedra. The compound was synthesized under hydrothermal conditions [500 (10) K, saturation vapour pressure].
Herrn Prof. Dr.K. Komarek zum 60. Geburtstag gewidmet.  相似文献   

9.
10.
The crystal structure of CuBr · (C2H5)4P2 has been determined by single crystal X-ray methods. The crystals are triclinic (space group P 1 ) with two formula units per unit cell (a) = 9,29, b = 9,92, c = 7,57 Å, α = 85,3°, β = 106,6°, γ = 109,1°. The copper atoms are tetrahedrally coordinated by two bromine and two phosphorus atoms (of different biphosphine molecules). The structure has continuous chains running parallel c, in which the copper atoms are linked together by alternating double bridges consisting of two biphosphine molecules and two bromine atoms, respectively.  相似文献   

11.
Chlorothionitrene Complexes of Tungsten. Crystal Structure of [WCl4(NSCl)]2 Tungsten hexachloride reacts with trithiazyl chloride, (NSCl)3, yielding the chlorothionitrene complex [WCl4(NSCl)]2, from which AsPh4[WCl5(NSCl)] can be obtained by reaction with AsPh4Cl. Both complexes are characterized by their i.r. spectra. The crystal structure of [WCl4(NSCl)]2 was determined and refined with X-ray diffraction data (1059 reflexes, R = 0.055). It crystallizes in the monoclinic space group P21/n with the lattice constants a = 1523, b = 904, c = 583 pm and β = 91.35°. In the unit cell there are two centrosymmetric [WCl4(NSCl)]2 molecules in which the W atoms are linked via two chloro bridges; short and long W? Cl distances (244 and 265 pm) alternate in the W2Cl2 ring, the NSCl groups are found in the trans positions to the longer W? Cl bonds. The WNS bond angle (175°) and short bond distances correspond to a formulation .  相似文献   

12.
Zusammenfassung Die Kristallstruktur von Ag2TeO2(OH)4 wurde mit Hilfe von Einkristallmethoden bestimmt und nach der Methode der kleinsten Quadrate verfeinert. Die Gitterparameter der Elementarzelle (Fdd 2–C 2v 19 ) betragen:a=18,72;b=6,48;c=8,94 Å. Mit allen beobachteten Reflexen wurde einR-Wert von 8,50%, unter Einschluß derHamilton-Reflexe einR-Wert von 9,41% erhalten. Die Telluratome sind oktaedrisch von 6 Sauerstoffen umgeben, während die Silberatome stark verzerrt tetraedrisch von 4 Sauerstoffen umgeben sind. Zwei dieser Tetraeder bilden mit einem dazwischenliegenden Oktaeder eine geometrische Einheit. Diese Einheiten sind über Sauerstoffe, die zu zwei verschiedenen Tetraedern gehören, und über Wasserstoffbrücken zu einem dreidimensionalen Gerüst verknüpft.
The crystal structure of Ag2TeO2(OH)4
The crystal structure of Ag2TeO2(OH)4 has been determined by single crystal X-ray methods and refined by the least squares method. The lattice parameters of the cell (Fdd 2–C 2v 19 ) are:a=18.72;b=6.48;c=8.94 Å. With all observed reflections anR-Value of 8.50% was obtained; if allHamilton-reflections are includedR=9.41%. The Te atoms are surrounded octahedrally by 6 oxygens, the 4 oxygens around the silver atoms form a distorted tetrahedron. Two of these tetrahedra form with an intermediate octahedron a geometric unit. These units are linked together to a three-dimensional structure by oxygens belonging to two different tetrahedra and by hydrogen bondings.


Mit 5 Abbildungen  相似文献   

13.
The title compound is monoclinic, space group Pc (No. 7),a=6.549 (1),b=9.094 (1),c=11.426 (2) Å, =126.78 (1)° andZ=2. Its crystal structure has been refined from 1 323 single crystal X-ray reflections toR=0.131. The structure of K6Ge2O7 is very similar to that of K6Co2O7 and K6Si2O7 both of which have been reported to be centrosymmetric, space group P21/c. While the angle at the bridging oxygen atom is 180° in the latter compounds, it is 157° in K6Ge2O7.
  相似文献   

14.
In the ternary system Ta/Mo/N a complex nitride of formula Mo(Ta,Mo)2N2 was observed at a nitrogen pressure of 360 bar and a temperature of 1,600°C. The crystal structure was determined from X-ray powder diagrams. The tetragonal unit cell, space groupI4/mmm-D 4h 17 , lattice parametersa=0.3051 nm,c=1.2530 nm contains ten atoms with an arrangement of the metal atoms corresponding to the MoSi2-Type structure.
  相似文献   

15.
Crystal Structure of Lead Cyclotetraphosphate-4-Hydrate, Pb2P4O12·4 H2O Pb2P4O12·4 H2O is the starting product of a series of solid state reactions with the final product cyclooctaphosphate. Pb2P4O12·4 H2O crystallizes in the monoclinic space group P21/n, with a = 8.07 ± 0.02, b = 11.76 ± 0.03, c = 7.50 ± 0.02 Å and β = 108.2 ± 0.3°. The crystal structure has been solved by Patterson and Fourier methods and refined by least squares calculations to an R-index of 0.07. The structure consists of P40124? ringanions, which are connected by Pb and hydrogen bonds. Lead is coordinated by eight oxygen atoms.  相似文献   

16.
Thionitrosyl Complexes of Osmium. Crystal Structure of AsPh4[OsCl4(NS)2Cl] The reaction of osmium pentachloride with trithiazyl chloride (NSCl)3 yields the thiazylchloride complex [OsCl4(NSCl)2], from which the thionitrosyl complex AsPh4[OsCl4(NS)2Cl] is obtained by reaction with AsPh4Cl in CH2Cl2. From this, the neutral thionitrosyl complex [OsCl4(NS)2] forms by chloride abstraction with gallium trichloride. The crystal structure of AsPh4[OsCl4(NS)2Cl] was determined and refined with the aid of X-ray diffraction data (R = 0.033, 2161 reflexions). It crystallizes in the monoclinic space group P21/c with four formula units per unit cell. The lattice constants are a = 1735, b = 1058, c = 1578 pm and β 95.64°. In the [OsCl4(NS)2Cl]? ion the osmium is octahedrally coordinated by four Cl atoms and two NS groups in a cis arrangement. The NS groups are essentially linear with the bond lengths Os?N 184 pm and N?S 146 pm. Loosely attached to one of the S atoms there is a Cl atom (S? Cl distance 228 pm); in the crystal it statistically belongs to both S atoms with an occupation probability of one half, and it cannot be decided whether there is a dynamical fluctuation between the S atoms or a static positional disorder. However, according to the i.r. spectrum the dynamical model seems more probable.  相似文献   

17.
The crystal structure of the title compound has been determined from single crystal X-ray diffraction data and refined toR=0.125. The unit cell is triclinic, space group P, (No. 2),a=5.688(1),b=5.701(1),c=8.583(1) Å, =81.32(1), =71.50(1), =67.95(1)° andZ=2. The structure consists of isolated [GeO4] tetrahedra linked together by four- and five-coordinate sodium atoms. Na4GeO4 is isostructural with Na4CoO4 (which has been described to be non-centrosymmetric and for which a centrosymmetric model is presented), K4GeO4, K4SnO4 and K4PbO4.
  相似文献   

18.
Suitable single crystals for X‐ray analysis of the recently published azido beryllate (Ph4P)2[Be4Cl4(μ‐N3)6] ( 1 ) [1] were obtained by a modified synthetic route, and the crystal structure of 1 was determined. The compound crystallizes isotypically with the corresponding bromo derivative [1] in the space group C2/c with 12 formula units per unit cell. Lattice dimensions at 193 K: a = 4125.5(1), b = 2001.7(1), c = 2050.4(1) pm, β = 101.05 (1)°, R1 = 0.0359. The structure contains adamantanlike dianions [Be4Cl4(μ‐N3)6]2? with a Be4N6 core forming by the bridging function of the α‐nitrogen atoms of the azido groups.  相似文献   

19.
The crystal structure of Cr4As3 has been determined by single crystal photographs: $$\begin{gathered} space group Cm - C_s ^3 \hfill \\ \alpha = 13.16_8 {\AA} \hfill \\ b = 3.54_2 {\AA} \hfill \\ c = 9.30_2 {\AA} \hfill \\ \beta = 102.1_9 \circ \hfill \\ \end{gathered}$$ Cr4As3 crystallizes with a novel structure type, which can be derived from the MnP-structure type.  相似文献   

20.
Azidocuprates(II). Crystal Structure of (PPh4)2[Cu2(N3)6] (PPh4)2[Cu(N3)4] and (PPh4)2[Cu2(N3)6], which is already known, are prepared from the corresponding chloro cuprates and excess silver azide in dichloro methane suspension. The azido cuprates form nonexplosive brown crystals of low sensitivity to moisture and are characterized by i.r. spectroscopy. (PPh4)2[Cu2(N3)6] was submitted to a X-ray crystallographic structural analysis (4284 observed, independent reflexions, R = 0.034). The compound crystallizes triclinic in the space group P1 with one formula unit per unit cell. The lattice parameters are a = 1047.4 pm; b = 1131.1 pm; c = 1179.4 pm; α = 101.26°; β = 109.31°; γ = 103.42°. The compound consists of PPh4 cations and centrosymmetric anions [Cu2(N3)6]2?, which meet D2h-symmetry fairly well. In the anions the copper atoms are linked to a planar Cu2N2 four-membered ring by the N α atoms of two azide groups. The other azido ligands are bonded terminally and complete coordination number 4 at the Cu atoms which show planar geometry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号