首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 13 毫秒
1.
In this study, a carbon-supported KOH/Ca12Al14O33 nanocomposite was fabricated via the microwave combustion method, in which dextrose was used as a carbon source, and its activity in the microwave-assisted transesterification reaction as a microwave absorption material was assessed. The samples were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, thermogravimetry, Brunauer–Emmett–Teller (BET), field-emission scanning electron microscopy, and energy dispersive X-ray analyses. The results showed that the carbonate and noncarbonate samples had a calcium aluminate (Ca12Al14O33) structure as a support. Different carbon groups were formed during preparation of the carbon-supported KOH/Ca12Al14O33 nanocomposite, which improved its surface area and porosity. Although the samples presented similar basicity, the carbonated nanocomposite exhibited twice as much activity as the KOH/Ca12Al14O33 nanocatalyst for conversion of canola oil to biodiesel in the microwave-assisted transesterification reaction at 270 W microwave power. The nanocomposite with a larger pore size made active sites easily accessible and exhibited higher catalytic ability where the conversion of 98.8% was obtained under the optimized conditions of 270 W microwave power, methanol/oil molar ratio of 15, 4 wt% of the nanocomposite, and 30 min of reaction time. The carbon-supported nanocatalyst can be reused for at least four times with less reduction in activity. Furthermore, the obtained biodiesel showed that it met the standard values (EN 14214 and ASTM D-6751) with respect to the density, kinematic viscosity at 40 °C, acid number, and flash point.  相似文献   

2.
Biodiesel being one of the most promising renewable biofuels has seen rapid increase in production capacity due to high demand for diesel replacement; along with oversupply of its by-product, crude glycerol. Developing new industrial usage for glycerol is essential to defray the cost and sustainability of biodiesel industry and to promote the biodiesel industrialization. One of the approaches is by the transformation of glycerol into a liquid, referred as bio-oil through pyrolysis technology. Bio-oils produced by pyrolysis processes can be upgraded to produce transportation fuels or for power generation. However, current state of pyrolysis technologies are still major hurdles their development with respect to its commercial applications. Recently, microwave technology has attracted considerable attention as effective method for significantly reducing reaction time, improving the yields and selectivity of target products. Hence, this review strives extensively towards addressing the application of microwave-assisted technology applied to the pyrolysis process as a way of cost-effective and operationally feasible processes to directly utilize crude glycerol. The present review will focus on the pyrolyzed liquid product (bio-oil) derived by employing the microwave-assisted pyrolysis method. This review concludes that microwave-assisted glycerol conversion technology is a promising option as an alternative method to conventional glycerol conversion technology.  相似文献   

3.
Biodiesel fuel is an alternative and renewable energy source, which may help to reduce air pollution, as well as our dependence on petroleum for energy. Several processes have already been developed for the production of biodiesel. Alkali-catalyzed transesterification with short-chain alcohols, for example, generates high yields of methyl esters in short reaction times. In this study, we have evaluated the efficacy of batch (one- and two-stage) transesterification of rapeseed oil in the production of rapeseed methyl ester. The conversion of rapeseed oil exhibited similar reaction patterns and yields in 30- and 1-L reaction systems. Approximately 98% of the rapeseed oil was converted at 400 rpm within 20 min, under the following conditions: 1% (w/w) KOH, 1∶10 methanol molar ratio, and at 60°C. In the 30-L, two-stage transesterification process, approx 98.5% of the rapeseed oil was converted at a 1∶4.5 molar ratio and 1% (w/w) KOH at 60°C for 30 min (first reaction condition), and at a 1∶1 molar ratio and 0.2% (w/w) KOH at 60°C for 30 min (second reaction condition).  相似文献   

4.
Heterogeneous catalysts, named SPS (sodium potassium silicates), were synthesized with an alternative silica (MPI silica) obtained from beach sand. In this work, the MPI was modified with NaOH and KOH producing silicate-based catalyst for biodiesel synthesis from waste cooking oil (WCO). The obtained catalyst was characterized by XRD, CO2-TPD, the Hammett basicity test, XRF, FESEM, EDX, FTIR and TG/DTG. The results confirmed the presence of K2O/Na2O oxides and their silicates, the main active sites responsible for the catalytic action. CO2-TPD and the Hammett basicity data suggested the presence of weak, medium and strong basic sites. Biodiesel yield was about 92% and the SPS catalyst was reused for five cycles. The biodiesel conversion by NMR 1H was about 93.89%. The DTG deconvolution revealed the decomposition of four typical biodiesel compounds (R2 = 0.9987). The method applied for the WCO biodiesel production using SPS catalyst represents an environmentally friendly process, based on low-cost material and reuse of waste biomass.  相似文献   

5.
《Comptes Rendus Chimie》2015,18(5):525-529
The increasing demand for energy has encouraged the development of renewable resources and environmentally benign fuel such as biodiesel. In this study, ethyl fatty esters (EFEs), a major component of biodiesel fuel, were synthesized from soybean oil using sodium ethoxide as a catalyst. By-products were glycerol and difatty acyl urea (DFAU), which has biological characteristics, as antibiotics and antifungal medications. Both EFEs and DFAU have been characterized using Fourier transform infrared (FTIR) spectroscopy, and 1H nuclear magnetic resonance (NMR) technique. The optimum conditions were studied as a function of reaction time, reactant molar ratios, catalyst percentage and the effect of organic solvents. The conversion ratio of soybean oil into pure EFEs was 76% after 10 h of reaction. The highest conversion yield of EFEs is obtained when the urea/soybean oil ratio was from 6.2 mmol to 1 mmol, while the highest production of DFAU is obtained when the ethoxide (as a catalyst)/soybean oil ratio is from 6.4 mmol to 1 mmol in hexane as the reaction medium.  相似文献   

6.
The present research is focused on the GC-FID determination of fatty acid methyl esters (FAMEs) in diesel blends, by means of an ionic liquid stationary phase, characterized by a dicationic 1,9-di(3-vinyl-imidazolium)nonane bis(trifluoromethyl)sulfonylimidate structure (SLB-IL100). The high polarity of the ionic liquid stationary phase allowed the separation of the FAMEs, from the less-retained hydrocarbons, thus avoiding the requirement of a hydrocarbon LC pre-separation. The results derived from the analyses of a soybean FAMEs B20 sample, carried out on an SLB-IL100 conventional column (30 m × 0.25 mm i.d. × 0.20 mm df), were compared with those attained on a polyethylene glycol column, of equivalent dimensions. Conventional and fast GC methods, for the analysis of FAMEs in diesel blends, were developed on an SLB-IL100 30 m × 0.25 mm i.d. × 0.20 μm df and on an SLB-IL100 12 m × 0.10 mm i.d. × 0.08 μm df column, respectively. The optimized IL methods were subjected to validation: retention time and peak area intra-day precision (n = 5) were good, with CV % values lower than 0.08% and 4.9%, respectively. With regards to the quantitation of FAMEs in biodiesel blends, a five points calibration curve was constructed, using C17:0 as internal standard.  相似文献   

7.
Oxidation stability is an important quality parameter for biodiesel. In general, the methods used to evaluate the oxidation stability of oils and biodiesels are time-consuming. This work reports the use of spectrofluorimetry, a fast analytical technique, associated with multivariate data analysis as a powerful analytical tool to prediction of the oxidation stability. The prediction of the oxidation stability showed a good agreement with the results obtained by the EN14112 reference method Rancimat. The models presented high correlation (0.99276 and 0.97951) between real and predicted values. The R2 values of 0.98557 and 0.95943 indicated the accuracy of the models to predict the oxidation stability of soy oil and soy biodiesel, respectively. The residual distribution does not follow a trend with respect to the predicted variables indicating the good quality of the fits.  相似文献   

8.
A ternary phase diagram of the Mn–Te–O system at 950 K has been established in the composition range in and around the MnO–TeO2 pseudo binary line. Various preparation methods were employed to confirm the co-existence of different ternary phases. The results of these phase equilibration studies were revalidated by the invariancy of partial pressures at constant temperature during high temperature mass spectrometric vaporization experiments. The following three-phase regions have been identified: MnO+Mn3O4+Mn6Te5O16 (phase region 1; PH1), Mn3O4+Mn6Te5O16+MnTeO3 (phase region 2; PH2), Mn3O4+MnTeO3+Mn3TeO6 (phase region 3; PH3), and MnTeO3+Mn2Te3O8+Mn3TeO6 (phase region 4; PH4). The complex nature of the Mn–Te–O ternary system was revealed by the interesting results obtained by us with regard to preparation of samples and mass spectrometric vaporization experiments.  相似文献   

9.
The optimization of the cleaning process, aiming to recover the permeate flux, and diafiltration as a means to obtain and purify soybean lecithin, were analyzed in this study as a means of delaying the decrease in permeate flux during the ultrafiltration (UF) of vegetable oils and their derivatives. It also aimed to maximize the exploration of the use of this type of technology during the processing steps. Thus the influence of the transmembrane pressure, cross flow velocity, and the opening of the permeate valve during the cleaning process (hexane circulation) of a ceramic membrane with a permeation area of 0.2 m2 and a pore diameter of 0.01 mm in a pilot unit with a processing capacity of 40 L, was studied. Four different operational cleaning conditions, associating combinations of pressure (0.5–2.0 bar) and velocity (1.0–5.0 m s−1), as well as the influence of opening the permeate valve, were studied. Also the production and purification of soybean lecithin was carried out by diafiltration of the retentates derived from the UF of the miscella, resulting in a product with about 90% of acetone insoluble matter. The most favorable cleaning condition was associated with a low pressure (0.5 bar) and elevated velocity (5.0 m s−1), with which it was possible to recover the permeate flux in about 85 min.  相似文献   

10.
Modeling of thermophysical properties and phase equilibria of long-chain methylesters mixtures are presented, using the SAFT-VR approach for mixtures. Molecules are represented as chains of spherical segments that can associate due to the presence of short-ranged attractive sites, using previous molecular parameters obtained for pure fatty acid methyl esters. These attractive sites as well as the intermolecular interactions between monomers segments are modeled via variable-ranged square-well potentials. The cross-energy binary-interaction parameter of the extended Berthelot combining rule was fitted to liquid densities and speed of sound. Very good predictions are obtained for isochoric heat capacities and for binary and ternary phase diagrams.  相似文献   

11.
Titania ultrafiltration membranes were successfully fabricated by a new route, which was directly derived from the nanoparticles suspension that was the intermediate product prior to dry and calcine in the synthesis of nanoparticle by a wet chemical method. The morphology and the crystal structure of the prepared membrane were analyzed by SEM and XRD. The effect of various dipping time on the membrane thickness was investigated. The rejection of the bovine serum albumin (BSA, 67,000 Da) was used to evaluate the separation characteristics of these membranes, and the relationship between the dipping time and the optimization thickness of the membrane was built on the base of the data of the pure water flux. SEM images showed that the surface of the membrane was defect-free and XRD revealed that the titania crystalline phase was pure anatase. The membrane thickness increased linearly with the square root of the dipping time and the dipping time of 30 s was necessary to form a defect-free titania layer on the top of supports. The titania layer derived from the dipping time of 30 s could be of thickness of 5.9 μm and an average pore size of 60 nm. The pure water permeability of the membrane was 860 × 10−5 L/(m2 h Pa) (860 L/(m2 h bar)), and the BSA rejections of the membranes prepared reached to 90% after 20 min running.  相似文献   

12.
Biodiesel is susceptible to autoxidation if exposed to air, light and temperature, during its storage. Physic nut (Jatropha curcas L.) seeds show potential application for biodiesel production since its oil yields high quality biodiesel. This work aims to evaluate the thermal behavior of the physic nut oil and biodiesel, from several Brazilian crops, by means of thermoanalytical techniques. Thermogravimetry (TG) and pressurized-differential scanning calorimetry (PDSC) were used in order to determine the applicability of physic nut biodiesel as fuel. Results suggest that physic nut biodiesel is a practical alternative as renewable and biodegradable fuel able to be used in diesel motors.  相似文献   

13.
Porous stainless steel (PSS) supported TiO2 membrane was synthesized from colloidal TiO2 sol by the sol–gel technique. Morphology and phase structure of the obtained membranes were regulated through optimizing the synthesis parameters including organic binders, aging periods of the parent sol and concentrations of the casting solutions as well as the sintering temperatures. Polyvinyl alcohol (PVA) 1750 was found to be feasible to fabricate TiO2 membrane with relatively flat surface and homogeneous morphology without crack. The aging period of the parent sol, which was revealed to be very important to the morphology of the particles deposited in the membranes on PSS, was decided to be 24 h. The concentration, under which the membranes could avoid macro-pores and have a uniform thickness of approximately 8 μm, was regulated to 0.0036 mol/l. Besides, a homogeneous microstructure with grain sizes of 0.08–0.2 μm was obtained in the membrane with a pure rutile phase when sintered at 850 °C. The obtained PSS supported TiO2 membrane with homogeneous microstructure and rutile phase may be very promising for practical applications.  相似文献   

14.
Enzymatic transesterification of palm oil with methanol and ethanol was studied. Of the four lipases that were tested in the initial screening, lipase Candida Rugosa (CR) resulted in the highest yield of mono alkyl esters. Lipase CR was further investigated in immobilized form within an activated carbon as support. The activated carbon was prepared by activation physical. Using the immobilized lipase CR, the effects of water and alcohol concentration, enzyme loading and enzyme thermal stability in the transesterification reaction were investigated. The optimal conditions for processing 50 g of palm oil were: 37 °C, 1:14.5 oil/methanol molar ratio, 1.0 g water and 500 mg lipase for the reactions with methanol, 35 °C, 1:15.0 oil/ethanol molar ratio, 1.0 g water, 500 mg lipase for the reactions with ethanol, and 35 °C, 1:10.0 oil/n-butanol molar ratio, 1.0 g water, 500 mg lipase for the reactions with ethanol. Subject to the optimal conditions, methyl and ethyl esters formation of 70 and 85 mol% in 1 h of reaction were obtained for the immobilized enzyme reactions. The flow microcalorimetry is an important and novel techniques is used in evaluation of biodiesel production.  相似文献   

15.
A simple and fast method for determining the content of Na, K, Ca, Mg, P, and 20 heavy metals in biodiesel samples with inductively coupled plasma optical emission spectrometry (ICP OES) using a two-nozzle Flow Blurring® multinebulizer prototype and on-line internal standard calibration, are proposed. The biodiesel samples were produced from different feedstock such as sunflower, corn, soybean and grape seed oils, via a base catalyst transesterification. The analysis was carried out without any sample pretreatment. The standards and samples were introduced through one of the multinebulizer nozzles, while the aqueous solution containing yttrium as an internal standard was introduced through the second nozzle. Thus, the spectral interferences were compensated and the formation of carbon deposits on the ICP torch was prevented. The determination coefficients (R2) were greater than 0.99 for the studied analytes, in the range 0.21–14.75 mg kg−1. Short-term and long-term precisions were estimated as relative standard deviation. These were acceptable, their values being lower than 10%. The LOQ for major components such as Ca, K, Mg, Na, and P, were within a range between 4.9 ng g−1 for Mg (279.553 nm) and 531.1 ng g−1 for Na (588.995 nm), and for the other 20 minor components they were within a range between 1.1 ng g−1 for Ba (455.403 nm) and 2913.9 ng g−1 for Pb (220.353 nm). Recovery values ranged between 95% and 106%.  相似文献   

16.
A rapid method for the simultaneous determination of free glycerol (FG) and total glycerol (TG) in biodiesel by CE using a short‐end multiple injection (SE/MI) configuration system is described. The sample preparation for FG involves the extraction of glycerol with water and for TG a saponification reaction is carried out followed by extraction as in the case of FG. The glycerol extracted in both cases is submitted to periodate oxidation and the iodate ions formed are measured on a CE‐SE/MI system. The relevance of this study lies in the fact that no analytical procedure has been previously reported for the determination of TG (or of FG and TG simultaneously) by CE. The optimum conditions for the saponification/extraction process were 1.25% KOH and 25°C, with a time of only 5 min, and biodiesel mass in the range of 50.0–200.0 mg can be used. Multiple injections were performed hydrodynamically with negative pressure as follows: 50 mbar/3s (FG sample); 50 mbar/6s (electrolyte spacer); 50 mbar/3s (TG sample). The linear range obtained was 1.55–46.5 mg/L with R2> 0.99. The LOD and LOQ were 0.16 mg/L and 0.47 mg/L, respectively for TG. The method provides acceptable throughput for application in quality control and monitoring biodiesel synthesis process. In addition, it offers simple sample preparation (saponification process), it can be applied to a variety biodiesel samples (soybean, castor, and waste cooking oils) and it can be used for the determination of two key parameters related to the biodiesel quality with a fast separation (less than 30 s) using an optimized CE‐SE/MI system.  相似文献   

17.
The phase diagram of the quasi binary NaBr–DyBr3 system was determined by differential thermal analysis (DTA) applied to 27 samples covering the complete composition range of the system. The 3NaBr*DyBr3(s) compound is present in the solid-phase in addition to the pure component halides NaBr(s) and DyBr3(s). The DyBr3(s) and 3NaBr*DyBr3(s) phases showed a polymorphic transition at 1112 and at 733 K, respectively. The {DyBr3(s) + 3NaBr*DyBr3(s)} eutectic mixture melts at 709 K giving a liquid of the molar composition x(NaBr) = 0.62. The 3NaBr*DyBr3(s) phase melts peritectically at 765 K. The phase diagram obtained in the present study virtually agrees with the calculated one available in literature.  相似文献   

18.
A method for the determination of sulfur in biodiesel samples by inductively coupled plasma optical emission spectrometry which uses microemulsion for sample preparation and the summation of the intensities of multiple emission lines has been developed. Microemulsions were prepared using 0.5 mL of 20% v/v HNO3, 0.5 mL of Triton X-100, 2-3 mL of biodiesel sample, and diluted with n-propanol to a final volume of 10 mL. Summation of the emission intensities of multiple sulfur lines allowed for increased accuracy and sensitivity. The amounts of sulfur determined experimentally were between 2 and 7 mg L−1, well below legislative standards for many countries. Recoveries obtained ranged from 72 to 119%, and recoveries obtained for the 182.562 nm line were slightly lower. This is most likely due to its lower sensitivity. Using microemulsion for sample preparation and the summation of the intensities of multiple emission lines for the successful determination of sulfur in biodiesel has been demonstrated.  相似文献   

19.
Mo-KIT-6 catalysts precursors obtained by direct hydrothermal synthesis using different Si/Mo molar ratios (10, 20, 30) were evaluated in the production of biodiesel from the transesterification of soybean oil with methanol. A 22 + 3PtCt factorial design was used to evaluate the influence of alcohol/oil and Si/Mo ratios on biodiesel yield. ANOVA statistical analysis showed that Si/Mo ratio was the most significant variable. The factorial design showed that the optimal conditions for maximizing the biodiesel yield are: using the 10_Mo-KIT-6 catalyst, and an alcohol/oil ratio of 20/1 at 150 °C for 3 h. However, using the 20_Mo-KIT-6 catalyst with an alcohol/oil ratio of 15/1 the biodiesel yield is close to the maximum, having the advantage of using a lower amount of methanol, which means that the separation of non-reacted alcohol will consume less energy.  相似文献   

20.
In this work, bovine submaxillary gland mucin (BSM) was used as an emulsifier to stabilize oil–water emulsion systems. Prior to use, commercial BSM was purified by jacalin affinity chromatography. Emulsions consisting of 5% mineral oil in phosphate buffered saline (PBS) were prepared through the addition of different amounts of purified mucin followed by sonication using either of two methods: (1) low energy input for a long time (2 h), or (2) high energy input for a short time (20 s). The surfactancy property of mucin was investigated by surface tension measurements, which showed the BSM to greatly reduce the surface tension of PBS. Compared to several synthetic surfactants of the Pluronic® type, mucin showed comparable or better surface activity than F68, F88 and F108 products in dilute solutions. The formed emulsions had a mean droplet size that decreased monotonically with increasing concentration of mucin until a plateau was reached at concentrations around 0.1% by weight. The stability of these emulsions was evaluated by monitoring their average droplet size during a 33-day period. Emulsions with more than 0.25% mucin showed a constant mean size throughout the period. Specifically, an emulsion produced with 0.95% mucin showed a stable mean droplet size of about 300 nm. The stability of the mucin-emulsified systems was also evaluated by measuring turbidity changes with time, which allowed a comparison with similar emulsions stabilized by the Pluronic® surfactants in the same concentration. Thus, mucin showed its ability to establish more stable and more efficient oil–water emulsion systems. Since mucin is a glycoprotein, and hence biodegradable, our results suggest that mucin might serve as an ideal biological surfactant for the stabilization of emulsion systems intended for biomedical and pharmaceutical applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号