首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper studies the effect of molecular mass on the melting temperature, enthalpy and entropy of hydroxy-terminated poly(ethylene oxide) (PEO). It aims to correlate the thermal behaviour of PEO polymers and their variation of molecular mass (MW). Samples ranging from 1500 to 200,000 isothermally treated at 373 K during 10 min, were investigated using DSC and Hot Stage Microscopy (HSM). On the basis of DSC and HSM results, melting temperatures were determined, and melting enthalpies and entropies were calculated. Considering the melting temperatures, it was found that the maximum or critical value of MW was found around 4000, and then these remain almost constant. This behaviour was interpreted assuming that lower MW fractions (MW<4000) crystallize in the form of extended chains and higher MW fractions (MW>4000), as folded chains. The melting enthalpies showed a scattering effect at least up to MW 35,000. It was difficult to obtain any relationship between melting enthalpies in J g–1 and MW. These variations seem to be of statistical nature. Corrected enthalpy data on a molar basis (kJ mol–1) exhibited a linear relationship with MW. Considering the solid—liquid equilibrium, the melting entropies (in kJ mol–1) were calculated. These values were more negative as compared with molar enthalpy increases. It was explained because the changes in melting temperatures are much smaller than those observed in the enthalpy values. Linear relationship between enthalpies andentropies as a function of MW was deduced.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

2.
Thermochemical properties of the 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide ionic liquid [EMim]NTf2 containing moisture absorbed from the atmosphere (0.242 wt %) are investigated. The phase behavior and thermal stability relative to salt dried in vacuum are studied by means of thermogravimetry and differential scanning calorimetry at different heating and cooling rates. The glass transition, crystallization, and melting temperatures, the enthalpies of phase transitions, and the changes in heat capacity during the formation of glass are determined. It is established that the absorbed water crystallizes at a temperature of around ?40.6°C and has virtually no effect on the thermal stability and phase behavior of the salt. Rapid cooling results in the ionic liquid transitioning into the glass state at ?91.7 °C and the formation of three mesophases with different melting temperatures; one crystalline modification that melts at a temperature of ?19.3°C forms upon slow cooling.  相似文献   

3.
The melting and the crystallization of-irradiated (doses: 0–6Mrad) ultra-high molecular weight nascent polyethylene (UHMWPE) and high density nascent polyethylene with normal molecular weight (NMWPE) were investigated by DSC. The heat of melting of the nascent UHMWPE (DSC degree of crystallinity, respectively) increases up to a dose of 3 Mrad, after which it slightly decreases. The heat of the second melting of UHMWPE and of the first and second melting of NMWPE increases slightly up to a dose of 3 Mrad, after which it does not change. The X-ray degree of crystallinity of the nascent non-irradiated and irradiated polymers was 0.62±0.02. The calorimetric crystallinity was compared to the X-ray one. The results show that radiation does not affect the polymer crystallinity, but influences the thermodynamic heat of melting. The increase ofH m vs. dose in UHMWPE is explained in terms of processes of tie molecule scission within the amorphous regions and on the surface of the crystals, which predominate over crosslinking up to a dose of 3 Mrad. That leads to an increase in the conformational mobility of the molecules and to an increase in the enthalpy, according to Peterlin's formula. The scission of the chains at the points of entangling of the tie molecules leads to a decrease in the temperature and to an increase in the enthalpy of crystallization of UHMWPE vs. dose. In NMWPE these effects are considerably weaker.  相似文献   

4.
The three-component reciprocal system Na,K║I,MoO4 has been studied by differential thermal analysis (DTA). The compositions and melting temperatures have been determined, and the enthalpies of melting of eutectic mixtures measured. Phase equilibria in the system are described, and phase fields are demarcated.  相似文献   

5.
Fish oil which is characterised by important amounts of poly-unsaturated ω-3 fatty acids attach increasing importance within functional foods. Recently attention is directed on physical methods that allow fast and relatively easy the identification and discrimination of oils. DSC measurements yield in information on thermal effects, characterised by changes in enthalpy and their temperature range such as melting and crystallisation. The aim of the investigation presented here was to take DSC curves in the temperature range +20 to −40°C on several fish oils and fish oil capsules to visualise the crystallisation and melting behaviour and to compare transition temperatures and enthalpies.  相似文献   

6.
The crystallization and melting behavior of a main-chain thermotropic copolyester has been investigated by differential scanning calormetry (DSC). The effect of annealing time and temperature on the transition temperatures and enthalpies has been evidenced. Two melting peaks are observed and the first one clearly develops on annealing. Hypotheses are suggested about the crystallization mechanism.  相似文献   

7.
Fish oil which is characterised by important amounts of poly-unsaturated ω-3 fatty acids attach increasing importance within functional foods. Recently attention is directed on physical methods that allow fast and relatively easy the identification and discrimination of oils. DSC measurements yield in information on thermal effects, characterised by changes in enthalpy and their temperature range such as melting and crystallisation. The aim of the investigation presented here was to take DSC curves in the temperature range +20 to ?40°C on several fish oils and fish oil capsules to visualise the crystallisation and melting behaviour and to compare transition temperatures and enthalpies.  相似文献   

8.
The thermal behaviour of thermoreversible gels prepared well below room temperature from isotactic poly(methyl methacrylate) (i-PMMA) in butyl acetate (BAC) was investigated by means of differential scanning calorimetry. Gel-formation and gel-melting enthalpies together with melting enthalpy of the solvent were determined as functions of polymer concentration. The results are consistent with the existence of a polymer/solvent complex with a stoichiometry of 1,5–2 BAC molecules per i-PMMA monomeric unit.  相似文献   

9.
The existence of two conformational isomers (A and B) with different crystal structures in 2-(4-morpholinothio) benzothiazole is shown. The melting temperatures of the two conformers are 345° and 357° K, respectively. The difference between the values of the melting enthalpies and entropies gives an indication of the two isomers flexibility whose proportion depends on the thermal history of the sample.  相似文献   

10.
The nascent morphology of UHMW PE exhibits high melting point, high crystallinity, and increased WAXS line breadth relative to samples formed by melt crystallization. Different empirical relationships between crystal size and melting point are observed for nascent and molded samples. This differentiation is removed following nitric acid treatment of the nascent flake. Solid-state annealing behavior is differentiated by several regimes. Regime I is characterized by increasing crystallite dimensions and crystallinity at low annealing temperatures. Regime II[a] and II[b] is identified by double melting in DSC scans of moldings and nascent flake, respectively. The double melting is due to partial melting with incomplete recrystallization. Regime II[a] of moldings is differentiated from Regime II[b] of flake by an increase in melting point of the higher melting endotherm. Within Regime II[b], the partial melting of the nascent structure is sensitive to the distribution of morphological stability. Regime III is initiated at annealing temperatures approaching the zero heating rate melting point, and shows melting kinetics by DSC or time-resolved WAXS using synchrotron x-ray radiation. The superheat, partially associated with Regime III behavior, is sensitive to morphological heterogeneity and annealing history. Morphological models are discussed which highlight the role of noncrystalline regions and melting kinetics on the melting behavior of nascent form crystallinity. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 495–517, 1998  相似文献   

11.
The structural and thermal properties of polyhydroxybutyrate (PHB) gels in dimethylformamide (DMF) are presented and discussed. The dilute and semi-dilute mixed PHB/DMF system undergoes a phase separation on cooling at a temperature Tgel, producing a gel in which the crystalline fraction is of the order of 50-60% and the diffraction pattern is that of disperse nano-crystals, with the same unit cell of the pure crystalline PHB. Upon heating, two melting peaks are normally observed at Tm1 and Tm2 (always higher than Tgel). Shapes of the peaks, temperatures and enthalpies of melting depend slightly on scanning rate on heating but on the procedure of gel preparation. Reproducibility and reversibility have always been found with repeated thermal cycles. A thermodynamic phase diagram is therefore constructed and discussed, although the morphology of the system may be subject to the experimental conditions under which the gel is prepared.  相似文献   

12.
Thirteen tellurites of rare-earth elements from cerium group (Sc, La, Ce, Pr, Nd, Sm, Eu) have been synthesized and characterized by chemical, X-ray and thermal analyses. The space group, crystal systems and parameters of the elementary cells of most of the tellurites have been established. The temperatures, enthalpies and entropies of melting were measured. The change of melting temperatures vs. ion radius occurs gradually in a uniform mode with some exceptions. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

13.
The melting and the crystallization of blends of ultra-high molecular weight polyethylene (UHMWPE) and polyethylene high density with normal molecular weight (NMWPE) are investigated by means of differential scanning calorimetry (DSC). Mixing the components at a temperature below the flow temperature of UHMWPE (215 °C) results in segregated melting and crystallization. The segregated melting and crystallization temperatures of both components do not depend on composition of the blend. The extreme enthalpy dependence on blend composition is explained in terms of mutual influence exhibited by the components with respect to each other. It is due to the inner stresses in nonflowing UHMWPE characterized with a lot of entangled tie molecules. Mixing the components above the flow temperature of UHMWPE results in only one peak of melting and crystallization respectively. Complete mixing and probably co-crystallization between the components takes place on mixing NMWPE with flowing UHMWPE.  相似文献   

14.
Thermal denaturation of soybean globulin fraction (SBGF) in diluted solution (protein concentration 0.15–0.63%) has been studied by the method of differential adiabatic scanning calorimetry. SBGF thermograms have two maxima. The low temperature maximum is consistent with denaturation of 7S component, while the high temperature maximum with denaturation of 11S components of this fraction. In the investigated range of protein concentrations the thermodynamic parameters (temperature and enthalpy) of denaturation of SBGF and its main components are constant. This fact suggests that differential adiabatic scanning calorimetry gives information purporting a change in the protein state at molecular level. The temperatures and enthalpies of denaturation of the main SBGF components linearly rise with increase of NaCl concentration. The slope of dependences of denaturation temperature on salt concentration,K s, is extremely large (nearly 20 K · l/mole). The elementary thermodynamic theory of lyotropic effects in thermal denaturation of proteins has been developed based on the two-state model and linear approximation of protein-salt interactions by means of the corresponding second virial coefficient. It shows that the dependences of thermodynamic parameters of thermal denaturation on salt concentration should be linear in the initial section. This conclusion is consistent with the experiment. The differences of enthalpies and entropies of transferring denatured and native forms of the main SBGF components from water into NaCl solution have been determined. They are positive and their quantity increases linearly with salt concentration. This fact is consistent with the concept to the effect that the main factor of salt influence on thermal denaturation of SBGF is confined to a decrease of protein hydration. The effect of protein nature on the quantity of lyotropic effect in thermal denaturation has been considered. Using simple considerations as a basis, the dependence of the ratio betweenK s and the denaturation temperature in water has been obtained, which characterizes the lyotropic effect, on the molar fraction of hydrophobic residues in the protein molecule. This dependence is linear and the lyotropic effect rises with increase in the content of hydrophobic residues. It is satisfactorily consistent with the experimental data on NaCl effect on thermal denaturation temperature for ichthyocol gelatin, ribonuclease, lysozyme, 7S and 11S SBGF components. An extraordinary strong influence of NaCl on thermal denaturation temperatures for the main SBGF components can be accounted for by a relatively high content of hydrophobic residues.  相似文献   

15.
The kinetics of nonisothermal crystallization and melting of blends of ultra-high molecular weight polyethylene (UHMWPE) and polyethylene high density with normal molecular weight (NMWPE) are investigated by means of differential scanning calorimetry (DSC). Mixing the components at a temperature below the flow temperature of UHMWPE (215 °C) results in increased crystallization/melting rates of the individual components in the blends above the corresponding additive values. The morphological observations of the blends, carried out by means of polarization microscopy, show that a strong boundary of both types of structures (UHMWPE non-flowing aggregates and NMWPE spherulite structures) does not exist. The NMWPE spherulites' dimensions decrease on increasing the UHMWPE concentration in the blends, but their number increases. The facilitation of the crystallization/melting of the components in the blends is explained in terms of mutual influence exhibited by the components with respect to each other. It is due to the inner stresses in nonflowing UHMWPE characterized with a lot of entangled tie molecules and to the partial co-crystallization of NMWPE molecules with the flowing part of UHMWPE. At mixing temperatures above 215 °C the melting/crystallization integral kinetic curves have only one linear part in contrast to these of the same blend (11 ratio of components), prepared at 190 °C. The rates of melting/crystallization remain almost constant with the increase of the mixing temperatures.  相似文献   

16.
We develop a classical rigid polarizable model of water for molecular simulations of water and ice. The model uses the Rowlinson five-site geometry: oxygen bearing the Lennard-Jones interaction and linearly polarizable point dipole, two positively charged hydrogens, and two massless negative charges placed symmetrically off oxygen so that the experimental dipole moment is reproduced. The target properties are the densities of water and ice Ih, diffusivity, enthalpies of fusion and vaporization, and the ice Ih melting point. The surface tension at lower temperatures is by 7% underestimated whereas the dielectric constant by 6% overestimated. Diffusivity and viscosity worsen at higher temperatures, although the Stokes radius is overestimated only by 2-7%. The ice Ih melting temperature is 260 K and the temperature of maximum density is 269 K. Rescaling the charges by a factor of 1.01 and Lennard-Jones energy by 1.0201 improves the melting point and energy-related quantities but shifts the agreement of kinetic properties to higher temperatures. For the model we propose abbreviation POL4D.  相似文献   

17.
Na2CrO4-NaF-NaI and K2CrO4-KF-KI three-component systems have been studied by differential thermal analysis (DTA). The compositions and melting temperatures have been determined and the enthalpies of melting have been measured for eutectic mixtures. Phase equilibria in the title systems have been described, and phase fields have been demarcated.  相似文献   

18.
In this article, we report on the rheological properties of agarose aqueous solutions and gels. Viscosity curves were determined for homogeneous agarose aqueous solutions at different temperatures (from 68 to 38 °C) to study the viscosity behavior as the systems undergo gelation. The gelation phenomenon of agarose solutions was also investigated by shear oscillation experiments and differential scanning calorimetry. The gelation and melting temperature as a function of agarose concentration were determined together with the gelation and melting enthalpies. The results obtained were interpreted using the two‐step model describing the gelation of agarose in water. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 322–328, 2008  相似文献   

19.
The heat capacity of poly(methacrylic acid) containing 2.5 wt % water was measured in a vacuum adiabatic calorimeter at temperatures between 80 and 325 K. The heat capacity of anhydrous poly(methacrylic acid) was calculated, and its standard enthalpies of combustion and formation were determined. On the basis of the enthalpy of melting of the “free”-water phase, the limit of water solubility in the polymer was found calorimetrically at 273 K. The temperatures of relaxation transitions (the glass transition and the β and γ transitions) of poly(methacrylic acid) mixtures with water were determined via differential thermal analysis in the region 80–550 K. In addition, the determination of the temperatures of transitions of anhydrous poly(methacrylic acid) was performed via extrapolation to zero water content of the concentration dependences of the relaxation-transition temperatures.  相似文献   

20.
热分析法研究超高分子量聚乙烯的热熔性质   总被引:2,自引:1,他引:1  
本文采用差热分析(DTA)、差示扫描量热法(DSC)研究了一系列以高效催化聚合而得的初生态超高分子量(Mw=70-315×104)聚乙烯粉的热熔行为,还研究了在接近熔化或部分熔化的温度下恒温热处理对晶体性质的影响.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号