首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper presents a theoretical and numerical investigation of the natural convection boundary-layer along a vertical surface, which is embedded in a porous medium, when the surface heat flux varies as (1 +x 2)), where is a constant andx is the distance along the surface. It is shown that for > -1/2 the solution develops from a similarity solution which is valid for small values ofx to one which is valid for large values ofx. However, when -1/2 no similarity solutions exist for large values ofx and it is found that there are two cases to consider, namely < -1/2 and = -1/2. The wall temperature and the velocity at large distances along the plate are determined for a range of values of .Notation g Gravitational acceleration - k Thermal conductivity of the saturated porous medium - K Permeability of the porous medium - l Typical streamwise length - q w Uniform heat flux on the wall - Ra Rayleigh number, =gK(q w /k)l/(v) - T Temperature - Too Temperature far from the plate - u, v Components of seepage velocity in the x and y directions - x, y Cartesian coordinates - Thermal diffusivity of the fluid saturated porous medium - The coefficient of thermal expansion - An undetermined constant - Porosity of the porous medium - Similarity variable, =y(1+x ) /3/x 1/3 - A preassigned constant - Kinematic viscosity - Nondimensional temperature, =(T – T )Ra1/3 k/qw - Similarity variable, = =y(loge x)1/3/x 2/3 - Similarity variable, =y/x 2/3 - Stream function  相似文献   

2.
An analysis is presented for the calculation of heat transfer due to free convective flow along a vertical plate embedded in a porous medium with an arbitrarily varying surface heat flux. By applying the appropriate coordinate transformations and the Merk series, the governing energy equation is expressed as a set of ordinary differential equations. Numerical solutions are presented for these equations which represent universal functions and several computational examples are provided.  相似文献   

3.
The free convective heat transfer to the power-law non-Newtonian flow from a vertical plate in a porous medium saturated with nanofluid under laminar conditions is investigated. It is considered that the non-Newtonian nanofluid obeys the mathematical model of power-law. The model used for the nanofluid incorporates the effects of Brownian motion and thermophoresis. The partial differential system governing the problem is transformed into an ordinary system via a usual similarity transformation. The numerical solutions of the resulting ordinary system are obtained. These solutions depend on the power-law index n, Lewis number Le, buoyancy-ratio number N r, Brownian motion number N b, and thermophoresis number N t. For various values of n and Le, the effects of the influence parameters on the fluid behavior as well as the reduced Nusselt number are presented and discussed.  相似文献   

4.
The effects of anisotropy on the steady laminar boundary-layer free convection over a vertical impermeable surface are analysed by using the method of integral relations. If the permeability in the direction orthogonal to the plate is greater than the permeability along the plate, then there is an increase in the temperature field.  相似文献   

5.
The onset of periodic and aperiodic convection in a binary nanofluid saturated rotating porous layer is studied considering constant flux boundary conditions. The porous medium obeys Darcy’s law, while the nanofluid envisages the effects of the Brownian motion and thermophoresis. The Rayleigh numbers for stationary and oscillatory convection are obtained in terms of various non-dimensional parameters. The effect of the involved physical parameters on the aperiodic convection is studied graphically. The results are validated in comparison with the published literature in limiting cases of the present study.  相似文献   

6.
基于分数阶Maxwell模型和分数阶Fourier定律构建黏弹性纳米流体在垂直板上的非定常二维边界层自然对流与传热控制方程,利用有限差分和L1算法获得数值稳定解,对不同物理参数下的速度、温度、平均表面摩擦系数和平均Nusselt数的变化趋势进行图形化分析。结果显示,速度和温度边界层均表现出短暂记忆和延迟特性;速度分数导数参数削弱了自然对流,而速度松弛时间的影响却相反;温度分数导数参数削弱了自然对流和热传导,而温度松弛时间的影响却相反。  相似文献   

7.
The steady mixed convection boundary-layer flow over a vertical impermeable surface in a porous medium saturated with water at 4°C (maximum density) when the surface heat flux varies as x m and the velocity outside the boundary layer varies as x (1+2m)/2, where x measures the distance from the leading edge, is discussed. Assisting and opposing flows are considered with numerical solutions of the governing equations being obtained for general values of the flow parameters. For opposing flows, there are dual solutions when the mixed convection parameter λ is greater than some critical value λ c (dependent on the power-law index m). For assisting flows, solutions are possible for all values of λ. A lower bound on m is found, m > −1 being required for solutions. The nature of the critical point λ c is considered as well as various limiting forms; the forced convection limit (λ = 0), the free convection limit (λ → ∞) and the limits as m → ∞ and as m → −1.  相似文献   

8.
This paper investigates mixed free and forced convection of non-Newtonian fluids from a vertical isothermal plate embedded in a homogenous porous medium. A mathematical model is developed based on the modified Darcy's law and boundary-layer approximations, and the exact similarity solution is obtained as well as an integral solution. These two solutions agree within 3% for aiding flows and 10% for opposing flows. It is found that, non-Newtonian characteristics of fluids have appreciable influences on velocity profiles, temperature distributions and flow regimes.  相似文献   

9.
The effect of the Hall current on the magnetohydrodynamic (MHD) natural convection flow from a vertical permeable flat plate with a uniform heat flux is analyzed in the presence of a transverse magnetic field. It is assumed that the induced magnetic field is negligible compared with the imposed magnetic field. The boundary layer equations are reduced to a suitable form by employing the free variable formulation (FVF) and the stream function formulation (SFF). The parabolic equations obtained from FVF are numerically integrated with the help of a straightforward finite difference method. Moreover, the nonsimilar system of equations obtained from SFF is solved by using a local nonsimilarity method, for the whole range of the local transpiration parameter ζ. Consideration is also given to the regions where the local transpiration parameter ζ is small or large enough. However, in these particular regions, solutions are acquired with the aid of a regular perturbation method. The effects of the magnetic field M and the Hall parameter m on the local skin friction coefficient and the local Nusselt number coefficient are graphically shown for smaller values of the Prandtl number Pr (= 0.005, 0.01, 0.05). Furthermore, the velocity and temperature profiles are also drawn from various values of the local transpiration parameter ζ.  相似文献   

10.
The effect of the Hall current on the magnetohydrodynamic (MHD) natural convection flow from a vertical permeable flat plate with a uniform heat flux is analyzed in the presence of a transverse magnetic field.It is assumed that the induced magnetic field is negligible compared with the imposed magnetic field.The boundary layer equations are reduced to a suitable form by employing the free variable formulation (FVF) and the stream function formulation (SFF).The parabolic equations obtained from FVF are numerically integrated with the help of a straightforward finite difference method.Moreover,the nonsimilar system of equations obtained from SFF is solved by using a local nonsimilarity method,for the whole range of the local transpiration parameter ζ.Consideration is also given to the regions where the local transpiration parameter ζis small or large enough.However,in these particular regions,solutions are acquired with the aid of a regular perturbation method.The effects of the magnetic field M and the Hall parameter m on the local skin friction coefficient and the local Nusselt number coefficient are graphically shown for smaller values of the Prandtl number Pr (=0.005,0.01,0.05).Furthermore,the velocity and temperature profiles are also drawn from various values of the local transpiration parameterζ.  相似文献   

11.
In this paper, the natural convection in a non-Darcy porous medium is studied using a temperature-concentration-dependent density relation. The effect of the two parameters responsible for the nonlinear convection is analyzed for different values of the inertial parameter, dispersion parameters, Rayleigh number, Lewis number, Soret number, and Dufour number. In the aiding buoyancy, the tangential velocity increases steeply with an increase in the nonlinear temperature parameter and the nonlinear concentration parameter when the inertial effect is zero. However, when the inertial effect is non-zero, the effect of the nonlinear temperature parameter and the nonlinear concentration parameter on the tangential velocity is marginal. The concentration distribution varies appreciably and spreads in different ranges for different values of the double dispersion parameters, the inertial effect parameter, and also for the parameters which control the nonlinear temperature and the nonlinear concentration. Heat and mass transfer varies extensively with an increase in the nonlinear temperature parameter and the nonlinear concentration parameter depending on Dacry and non-Darcy porous media. The variation in heat and mass transfer when all the effects, i.e., the inertial effect, double dispersion ef- fects, and Soret and Dufour effects, are simultaneously zero and non-zero. The combined effects of the nonlinear temperature parameter, the nonlinear concentration parameter and buoyancy are analyzed. The effect of the nonlinear temperature parameter and the nonlinear concentration parameter and also the cross diffusion effects on heat and mass transfer are observed to be more in Darcy porous media compared with those in non- Darcy porous media. In the opposing buoyancy, the effect of the temperature parameter is to increase the heat and mass transfer rate, whereas that of the concentration parameter is to decrease.  相似文献   

12.
The nonsimilar non-Darcian free-convection flow about a vertical cylinder with impermeable surface embedded in a saturated porous medium, where surface temperature of the cylinder varies as xm, a power function of distance from the leading edge, has been studied by employing the implicit finite-difference method together with the Newton's quasilinearization technique. In the present investigation, effects of the surface mass flux together with the inertial effects on the rate of heat transfer at the surface, on the velocity distribution, and on the temperature distribution are shown graphically.  相似文献   

13.
The effect of the Hall current on the magnetohydrodynamic (MHD) natural convection flow from a vertical permeable flat plate with a uniform heat flux is analyzed in the presence of a transverse magnetic field.It is assumed that the induced magnetic field is negligible compared with the imposed magnetic field.The boundary layer equations are reduced to a suitable form by employing the free variable formulation (FVF) and the stream function formulation (SFF).The parabolic equations obtained from FVF are numer...  相似文献   

14.
Magnetohydrodynamic (MHD) bioconvection of an incompressible electrically conducting nanofluid near a vertical wavy surface saturated porous medium containing both nanoparticle and gyrotactic microorganisms is investigated. The nanofluid is represented by a model that includes both Brownian motion and thermophoresis effects. A suitable set of non-dimensional variables are used to transform the governing boundary layer equations into a dimensionless form. The resulting nonlinear system is mapped to the vertical flat plate domain, and a non-similar solution is used to the obtained equations. The obtained non-similar system is then solved numerically using the fourth-order Runge-Kutta method. The influence of various physical parameters on the local Nusselt number, the local Sherwood number, the local density number of the motile microorganisms, the dimensionless velocity, the dimensionless temperature, and the rescaled density of motile microorganisms is studied. It is found that the local Nusselt number, the local Sherwood number, and the local density number of the motile microorganisms decrease by increasing either the Grashof number or the magnetic field parameter.  相似文献   

15.
In this paper we have numerically investigated the existence and uniqueness of a vertically flowing fluid passed a model of a thin vertical fin in a saturated porous media. We have assumed the two-dimensional mixed convection from a fin, which is modelled as a fixed, semi-infinite vertical surface, embedded in a fluid-saturated porous media under the boundary-layer approximation. We have taken the temperature, in excess of the constant temperature in the ambient fluid on the fin, to vary as  , where is measured from the leading edge of the plate and λ is a fixed constant. The Rayleigh number is assumed to be large so that the boundary-layer approximation may be made and the fluid velocity at the edge of the boundary-layer is assumed to vary as . The problem then depends on two parameters, namely λ and , the ratio of the Rayleigh to Péclet numbers. It is found that when λ>0 (<0) there are (is) dual (unique) solution(s) when is grater than some negative values of (which depends on λ). When λ<0 there is a range of negative value of (which depends on λ) for which dual solutions exist and for both λ>0 and λ<0 there is a negative value of (which depends on λ) for which there is no solution. Finally, solutions for 0<1 and 1 have been obtained.  相似文献   

16.
The effects of thermal dispersion and thermal stratification on mixed convection about a vertical surface in a porous medium are studied. The conservation equations that govern the problem are reduced to a system of nonlinear ordinary differential equations. The resulting equations are solved on the basis of the local similarity approximation. The results indicate that both dispersion and stratification effects have considerable influence on the heat transfer rate.  相似文献   

17.
In this work, the conjugated heat transfer characteristics of a thin vertical strip of finite length, placed in a porous medium has been studied using numerical and asymptotic techniques. The nondimensional temperature distribution in the strip and the reduced Nusselt number at the top of the strip are obtained as a function of the thermal penetration parameter s, which measures the thermal region where the temperature of the strip decays to the ambient temperature of the surrounding fluid. The numerical values of this nondimensional parameter permits to classify the different physical regimes, showing different solutions: a thermally long behaviour, an intermediate transition and a short strip limit.  相似文献   

18.
We examine the combined effect of spatially stationary surface waves and the presence of fluid inertia on the free convection induced by a vertical heated surface embedded in a fluid-saturated porous medium. We consider the boundary-layer regime where the Darcy-Rayleigh number, Ra, is very large, and assume that the surface waves have O(1) amplitude and wavelength. The resulting boundary-layer equations are found to be nonsimilar only when the surface is nonuniform and inertia effects are present; self-similarity results when either or both effects are absent. Detailed results for the local and global rates of heat transfer are presented for a range of values of the inertia parameter and the surface wave amplitude.  相似文献   

19.
The effect of thermal radiation on the non-Darcy mixed convection flow over a non-isothermal horizontal surface immersed in a saturated porous medium has been studied. The wall temperature is assumed to have a power-law variation with the distance measured from the leading edge of the plate. The non-linear coupled parabolic partial differential equations governing the flow have been solved numerically using a finite-difference scheme. For some particular cases, the self-similar solution has also been obtained. The heat transfer is found to be strongly influenced by the radiative flux number, buoyancy parameter, variation of wall temperature, non-Darcy parameter and the nature of the free stream velocity.  相似文献   

20.
A numerical study of a non-Darcy mixed convective heat and mass transfer flow over a vertical surface embedded in a dispersion, melting, and thermal radiation is porous medium under the effects of double investigated. The set of governing boundary layer equations and the boundary conditions is transformed into a set of coupled nonlinear ordinary differential equations with the relevant boundary conditions. The transformed equations are solved numerically by using the Chebyshev pseudospectral method. Comparisons of the present results with the existing results in the literature are made, and good agreement is found. Numerical results for the velocity, temperature, concentration profiles, and local Nusselt and Sherwood numbers are discussed for various values of physical parameters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号