共查询到20条相似文献,搜索用时 15 毫秒
1.
Qingfang Liu Lei Ding Qingchang Liu 《Mathematical Methods in the Applied Sciences》2014,37(6):870-881
A sparse grid method for the time‐dependent Navier–Stokes equations based on hyperbolic cross approximation is considered in this article. Subsequent truncation of the associated series expansion results in a sparse grid discretization. Stability and convergence of the fully discrete sparse grid method are established. Finally, the numerical experiment is presented to show the effectiveness of this sparse grid method. Copyright © 2013 John Wiley & Sons, Ltd. 相似文献
2.
M.M. Rashidi H. Shahmohamadi G. Domairry 《Numerical Methods for Partial Differential Equations》2011,27(2):292-301
The similarity transform for the steady three‐dimensional Navier–Stokes equations of flow between two stretchable disks gives a system of nonlinear ordinary differential equations. In this article, the variational iteration method was used for solving these equations. The results have been compared with the numerical results. This article depicts that the VIM is an efficient and powerful method for solving nonlinear differential equations. This method is applicable to strongly and weakly nonlinear problems. © 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2011 相似文献
3.
In this paper, we study the existence and regularity of solutions to the Stokes and Oseen equations with nonhomogeneous Dirichlet boundary conditions with low regularity. We consider boundary conditions for which the normal component is not equal to zero. We rewrite the Stokes and the Oseen equations in the form of a system of two equations. The first one is an evolution equation satisfied by Pu, the projection of the solution on the Stokes space – the space of divergence free vector fields with a normal trace equal to zero – and the second one is a quasi-stationary elliptic equation satisfied by (I−P)u, the projection of the solution on the orthogonal complement of the Stokes space. We establish optimal regularity results for Pu and (I−P)u. We also study the existence of weak solutions to the three-dimensional instationary Navier–Stokes equations for more regular data, but without any smallness assumption on the initial and boundary conditions. 相似文献
4.
J.‐L. Guermond Serge Prudhomme 《Numerical Methods for Partial Differential Equations》2008,24(3):759-775
The purpose of this paper is twofold: (i) We show that the Fourier‐based Nonlinear Galerkin Method (NLGM) constructs suitable weak solutions to the periodic Navier–Stokes equations in three space dimensions provided the large scale/small scale cutoff is appropriately chosen. (ii) If smoothness is assumed, NLGM always outperforms the Galerkin method by a factor equal to 1 in the convergence order of the H 1‐norm for the velocity and the L2‐norm for the pressure. This is a purely linear superconvergence effect resulting from standard elliptic regularity and holds independently of the nature of the boundary conditions (whether periodicity or no‐slip BC is enforced). © 2007 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2008 相似文献
5.
In this paper, we combine the Galerkin–Lagrange multiplier (GLM) method with the two-level method to solve the stationary Navier–Stokes equations in order to avoid the time-consuming process and the construction of zero-divergence elements. Different quadrilateral partitions are used for approximating the velocity and the pressure. Then some error estimates are obtained and some numerical results of the GLM method and the two-level GLM method are given. The results show that the two-level method based on the GLM method is more efficient than the GLM method under the convergence rate of same order. 相似文献
6.
We consider a fully discrete two-level approximation for the time-dependent Navier–Stokes equations in two dimension based on a time-dependent projection. By defining this new projection, the iteration between large and small eddy components can be reflected by its associated space splitting. Hence, we can get a weakly coupled system of large and small eddy components. This two-level method applies the finite element method in space and Crank–Nicolson scheme in time. Moreover,the analysis and some numerical examples are shown that the proposed two-level scheme can reach the same accuracy as the classical one-level Crank–Nicolson method with a very fine mesh size h by choosing a proper coarse mesh size H. However, the two-level method will involve much less work. 相似文献
7.
A superconvergent nonconforming mixed finite element method for the Navier–Stokes equations 下载免费PDF全文
The superconvergence for a nonconforming mixed finite element approximation of the Navier–Stokes equations is analyzed in this article. The velocity field is approximated by the constrained nonconforming rotated Q1 (CNRQ1) element, and the pressure is approximated by the piecewise constant functions. Under some regularity assumptions, the superconvergence estimates for both the velocity in broken H1‐norm and the pressure in L2‐norm are obtained. Some numerical examples are presented to demonstrate our theoretical results. © 2015 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 32: 646–660, 2016 相似文献
8.
In this study the 2D Navier–Stokes equations are used to obtain a new self-similar equation. The latter equation, subject to appropriate boundary conditions and volume discharge, describes the pressure distribution and velocity field of a plane free jet. 相似文献
9.
The conforming spectral element methods are applied to solve the linearized Navier–Stokes equations by the help of stabilization techniques like those applied for finite elements. The stability and convergence analysis is carried out and essential numerical results are presented demonstrating the high accuracy of the method as well as its robustness. © 1998 John Wiley & Sons, Inc. Numer Methods Partial Differential Eq 14: 115–141, 1998 相似文献
10.
P. Braz e Silva M. A. Rojas‐Medar E. J. Villamizar‐Roa 《Mathematical Methods in the Applied Sciences》2010,33(3):358-372
We show the existence of strong solutions for the nonhomogeneous Navier–Stokes equations in three‐dimensional domains with boundary uniformly of class C3. Under suitable assumptions, uniqueness is also proved. Copyright © 2009 John Wiley & Sons, Ltd. 相似文献
11.
We establish the moment estimates for a class of global weak solutions to the Navier–Stokes equations in the half‐space. Copyright © 2009 John Wiley & Sons, Ltd. 相似文献
12.
Luigi C. Berselli 《Mathematical Methods in the Applied Sciences》1999,22(13):1079-1085
In this paper we find sufficient conditions, involving only the pressure, that ensure the regularity of weak solutions to the Navier–Stokes equations. Conditions involving only the pressure were previously obtained in [7,4]. Following a remark in this last reference we improve, in particular, Kaniel's result [7]. Our condition can be seen at the light of the heuristic idea that the pressure behaves similarly to the modulus squared of the velocity. Copyright © 1999 John Wiley & Sons, Ltd. 相似文献
13.
Yong Zhou 《Mathematical Methods in the Applied Sciences》2007,30(10):1223-1229
In this paper we derive a decay rate of the L2‐norm of the solution to the 3‐D Navier–Stokes equations. Although the result which is proved by Fourier splitting method is well known, our method is new, concise and direct. Moreover, it turns out that the new method established here has a wide application on other equations. Copyright © 2007 John Wiley & Sons, Ltd. 相似文献
14.
This article considers a stabilized finite element approximation for the branch of nonsingular solutions of the stationary Navier–Stokes equations based on local polynomial pressure projection by using the lowest equal-order elements. The proposed stabilized method has a number of attractive computational properties. Firstly, it is free from stabilization parameters. Secondly, it only requires the simple and efficient calculation of Gauss integral residual terms. Thirdly, it can be implemented at the element level. The optimal error estimate is obtained by the standard finite element technique. Finally, comparison with other methods, through a series of numerical experiments, shows that this method has better stability and accuracy. 相似文献
15.
Pengzhan Huang Yinnian He Xinlong Feng 《Mathematical Methods in the Applied Sciences》2012,35(9):1033-1046
A new defect‐correction method for the stationary Navier–Stokes equations based on local Gauss integration is considered in this paper. In both defect step and correction step, a locally stabilized technique based on the Gaussian quadrature rule is used. Moreover, stability and convergence of the presented method are deduced. Finally, we provide some numerical experiments to show good stability and effectiveness properties of the presented method. Copyright © 2012 John Wiley & Sons, Ltd. 相似文献
16.
Pengzhan Huang 《Numerical Methods for Partial Differential Equations》2014,30(1):74-94
Three penalty finite element methods are designed to solve numerically the steady Navier–Stokes equations, where the Stokes, Newton, and Oseen iteration methods are used, respectively. Moreover, the stability analysis and error estimate for these nine algorithms are provided. Finally, the numerical tests confirm the theoretical results of the presented algorithms. Meanwhile, the numerical investigations are provided to show that the proposed methods are efficient for solving the steady Navier–Stokes equations with the different viscosity. © 2013 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 30: 74‐94, 2014 相似文献
17.
In this paper, we consider the stabilization of the nonstationary incompressible Navier–Stokes equations around a stationary solution by a boundary linear feedback control. The feedback operator is obtained from the solution of the algebraic Bernoulli equation associated with the penalized linearized Navier–Stokes equations around an unstable stationary solution and is used to locally stabilize the original nonlinear equations. We give the explicit factorized form of the stabilizing solution of the algebraic Bernoulli equation. The numerical effectiveness of this approach is demonstrated by stabilizing the vortex shedding behind a circular obstacle. Copyright © 2011 John Wiley & Sons, Ltd. 相似文献
18.
Yinnian He 《Numerical Methods for Partial Differential Equations》2008,24(1):79-103
In this article we consider the spectral Galerkin method with the implicit/explicit Euler scheme for the two‐dimensional Navier–Stokes equations with the L2 initial data. Due to the poor smoothness of the solution on [0,1), we use the the spectral Galerkin method based on high‐dimensional spectral space HM and small time step Δt2 on this interval. While on [1,∞), we use the spectral Galerkin method based on low‐dimensional spectral space Hm(m = O(M1/2)) and large time step Δt. For the spectral Galerkin method, we provide the standard H2‐stability and the L2‐error analysis. © 2007 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2007 相似文献
19.
In this paper, we propose a two-grid algorithm for solving the stream function formulation of the stationary Navier-Stokes
equations. The algorithm is constructed by reducing the original system to one small, nonlinear system on the coarse mesh
space and two similar linear systems (with same stiffness matrix but different right-hand side) on the fine mesh space. The
convergence analysis and error estimation of the algorithm are given for the case of conforming elements. Furthermore, the
algorithm produces a numerical solution with the optimal asymptotic H
2-error. Finally, we give a numerical illustration to demonstrate the effectiveness of the two-grid algorithm for solving the
Navier-Stokes equations. 相似文献
20.
We study the Navier–Stokes equations for nonhomogeneous incompressible fluids in a bounded domain Ω of R3. We first prove the existence and uniqueness of local classical solutions to the initial boundary value problem of linear Stokes equations and then we obtain the existence and uniqueness of local classical solutions to the Navier–Stokes equations with vacuum under the assumption that the data satisfies a natural compatibility condition. 相似文献