首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Unimolecular metastable decomposition of diethoxymethane (CH(2)(OCH(2)CH(3))(2), 1) upon electron impact has been investigated by means of mass-analyzed ion kinetic energy (MIKE) spectrometry and theD-labeling technique in conjunction with thermochemistry. The m/z 103 ion ([M - H](+) : CH(OCH(2)CH(3)) = O(+)CH(2)CH(3)) decomposes into the m/z 47 ion (protonated formic acid, CH(OH) = O(+)H) by consecutive losses of two C(2)H(4) molecules via an m/z 75 ion. The resulting product ion at m/z 47 further decomposes into the m/z 29 and 19 ions by losses of H(2)O and CO, respectively, via an 1,3-hydroxyl hydrogen transfer, accompanied by small kinetic energy release (KER) values of 1.3 and 18.8 meV, respectively. When these two elimination reactions are suppressed by a large isotope effect, however, another 1,1-H(2)O elimination with a large KER value (518 meV) is revealed. The m/z 89 ion ([M - CH(3)](+) : CH(2)(OCH(2)CH(3))O(+) = CH(2)) decomposes into the m/z 59 ion (CH(3)CH(2)O(+) = CH(2)) by losing CH(2)O in the metastable time window. The source-generated m/z 59 ion ([M - OCH(2)CH(3)](+) : CH(2) = O(+)CH(2)CH(3)) decomposes into the m/z 41 (CH(2) = CH(+)CH(2)) and m/z 31 (CH(2) = O(+)H) ions by losses of H(2)O and C(2)H(4), respectively, with considerable hydrogen scrambling prior to decomposition. Copyright 2000 John Wiley & Sons, Ltd.  相似文献   

2.
Methyl 2-azidopropionate (N(3)CH(3)CHCOOCH(3), M2AP) has been synthesized and characterized by different spectroscopic methods, and the thermal decomposition of this molecule has been investigated by matrix isolation infrared (IR) spectroscopy and ultraviolet photoelectron spectroscopy (UVPES). Computational methods have been employed in the spectral simulation of both UVPES and matrix IR spectra and in the rationalization of the thermal decomposition results. M2AP presents a HOMO vertical ionization energy (VIE) of 9.60 ± 0.03 eV and contributions from all four lowest-energy conformations of this molecule are detected in the gas phase. Its thermal decomposition starts at ca. 400 °C and is complete at ca. 650 °C, yielding N(2), CO, CO(2), CH(3)CN, and CH(3)OH as the final decomposition products. Methyl formate (MF) and CH(4) are also found during the pyrolysis process. Analysis of the potential energy surface of the decomposition of M2AP indicates that M2AP decomposes preferentially into the corresponding imine (M2IP), through a 1,2-H shift synchronous with the N(2) elimination (Type 1 mechanism), requiring an activation energy of 160.8 kJ/mol. The imine further decomposes via two competitive routes: one accounting for CO, CH(3)OH, and CH(3)CN (ΔE(G3) = 260.2 kJ/mol) and another leading to CO(2), CH(4), and CH(3)CN (ΔE(G3) = 268.6 kJ/mol). A heterocyclic intermediate (Type 2 mechanism)-4-Me-5-oxazolidone-can also be formed from M2AP via H transfer from the remote O-CH(3) group, together with the N(2) elimination (ΔE(G3) = 260.2 kJ/mol). Finally, a third pathway which accounts for the formation of MF through an M2AP isomer is envisioned.  相似文献   

3.
The pyrolyses of the guaiacols or methoxyphenols (o-, m-, and p-HOC(6)H(4)OCH(3)) have been studied using a heated SiC microtubular (μ-tubular) reactor. The decomposition products are detected by both photoionization time-of-flight mass spectroscopy (PIMS) and matrix isolation infrared spectroscopy (IR). Gas exiting the heated SiC μ-tubular reactor is subject to a free expansion after a residence time of approximately 50-100 μs. The PIMS reveals that, for all three guaiacols, the initial decomposition step is loss of methyl radical: HOC(6)H(4)OCH(3) → HOC(6)H(4)O + CH(3). Decarbonylation of the HOC(6)H(4)O radical produces the hydroxycyclopentadienyl radical, C(5)H(4)OH. As the temperature of the μ-tubular reactor is raised to 1275 K, the C(5)H(4)OH radical loses a H atom to produce cyclopentadienone, C(5)H(4)═O. Loss of CO from cyclopentadienone leads to the final products, acetylene and vinylacetylene: C(5)H(4)═O → [CO + 2 HC≡CH] or [CO + HC≡C-CH═CH(2)]. The formation of C(5)H(4)═O, HCCH, and CH(2)CHCCH is confirmed with IR spectroscopy. In separate studies of the (1 + 1) resonance-enhanced multiphoton ionization (REMPI) spectra, we observe the presence of C(6)H(5)OH in the molecular beam: C(6)H(5)OH + λ(275.1?nm) → [C(6)H(5)OH ?] + λ(275.1nm) → C(6)H(5)OH(+). From the REMPI and PIMS signals and previous work on methoxybenzene, we suggest that phenol results from a radical/radical reaction: CH(3) + C(5)H(4)OH → [CH(3)-C(5)H(4)OH]* → C(6)H(5)OH + 2H.  相似文献   

4.
用TPD和IR方法研究了CH_3NO_2在典型固体酸SiO_2-Al_2O_3和固体碱MgO催化剂上的吸附分解。结果表明,在SiO_2-Al_2O_3表面CH_3NO_2吸附转化为表面甲酰胺物种,后者在高温下分解为CO_2和NH_3。在MgO表面CH_3NO_2吸附形成多种表面化学物种,它们在升温过程中脱附,并通过表面亚硝基甲烷物种分解为NO、C_2H_4、C_2H_6和N_2O.讨论了CH_3NO_2分解过程中表面酸、碱中心的作用。  相似文献   

5.
The pyrolyses of phenol and d(5)-phenol (C(6)H(5)OH and C(6)D(5)OH) have been studied using a high temperature, microtubular (μtubular) SiC reactor. Product detection is via both photon ionization (10.487 eV) time-of-flight mass spectrometry and matrix isolation infrared spectroscopy. Gas exiting the heated reactor (375 K-1575 K) is subject to a free expansion after a residence time in the μtubular reactor of approximately 50-100 μs. The expansion from the reactor into vacuum rapidly cools the gas mixture and allows the detection of radicals and other highly reactive intermediates. We find that the initial decomposition steps at the onset of phenol pyrolysis are enol/keto tautomerization to form cyclohexadienone followed by decarbonylation to produce cyclopentadiene; C(6)H(5)OH → c-C(6)H(6) = O → c-C(5)H(6) + CO. The cyclopentadiene loses a H atom to generate the cyclopentadienyl radical which further decomposes to acetylene and propargyl radical; c-C(5)H(6) → c-C(5)H(5) + H → HC≡CH + HCCCH(2). At higher temperatures, hydrogen loss from the PhO-H group to form phenoxy radical followed by CO ejection to generate the cyclopentadienyl radical likely contributes to the product distribution; C(6)H(5)O-H → C(6)H(5)O + H → c-C(5)H(5) + CO. The direct decarbonylation reaction remains an important channel in the thermal decomposition mechanisms of the dihydroxybenzenes. Both catechol (o-HO-C(6)H(4)-OH) and hydroquinone (p-HO-C(6)H(4)-OH) are shown to undergo decarbonylation at the onset of pyrolysis to form hydroxycyclopentadiene. In the case of catechol, we observe that water loss is also an important decomposition channel at the onset of pyrolysis.  相似文献   

6.
用高分辨电子能量损失谱,热脱附谱,紫外光电子能谱研究了CH3在清洁及预吸附氧Pd表面上的热稳定性。CH3由CH3I在Pd表面的热分解来产生。CH3I的HREELS表明,CH3中的C-H键近似与表面平行,CH3I在Pd表面低于110K时已裂解为CH3和I,大量的CH3在200-210K的温度范围内的H结合并以CH4的形式脱附,但在氧改性表面,CH4脱附的温度范围变宽,脱附温度有所提高,可能是由于表面  相似文献   

7.
The mutual sensitization of the oxidation of NO and a natural gas blend (methane-ethane 10:1) was studied experimentally in a fused silica jet-stirred reactor operating at 10 atm, over the temperature range 800-1160 K, from fuel-lean to fuel-rich conditions. Sonic quartz probe sampling followed by on-line FTIR analyses and off-line GC-TCD/FID analyses were used to measure the concentration profiles of the reactants, the stable intermediates, and the final products. A detailed chemical kinetic modeling of the present experiments was performed yielding an overall good agreement between the present data and this modeling. According to the proposed kinetic scheme, the mutual sensitization of the oxidation of this natural gas blend and NO proceeds through the NO to NO2 conversion by HO2, CH3O2, and C2H5O2. The detailed kinetic modeling showed that the conversion of NO to NO2 by CH3O2 and C2H5O2 is more important at low temperatures (ca. 820 K) than at higher temperatures where the reaction of NO with HO2 controls the NO to NO2 conversion. The production of OH resulting from the oxidation of NO by HO2, and the production of alkoxy radicals via RO2 + NO reactions promotes the oxidation of the fuel. A simplified reaction scheme was delineated: NO + HO2 --> NO2 + OH followed by OH + CH4 --> CH3 + H2O and OH + C2H6 --> C2H5 + H2O. At low-temperature, the reaction also proceeds via CH3 + O2 (+ M) --> CH3O2 (+ M); CH3O2 + NO --> CH3O + NO2 and C2H5 + O2 --> C2H5O2; C2H5O2 + NO --> C2H5O + NO2. At higher temperature, methoxy radicals are produced via the following mechanism: CH3 + NO2 --> CH3O + NO. The further reactions CH3O --> CH2O + H; CH2O + OH --> HCO + H2O; HCO + O2 --> HO2 + CO; and H + O2 + M --> HO2 + M complete the sequence. The proposed model indicates that the well-recognized difference of reactivity between methane and a natural gas blend is significantly reduced by addition of NO. The kinetic analyses indicate that in the NO-seeded conditions, the main production of OH proceeds via the same route, NO + HO2 --> NO2 + OH. Therefore, a significant reduction of the impact of the fuel composition on the kinetics of oxidation occurs.  相似文献   

8.
Using pulse radiolysis and steady-state gamma-radiolysis techniques, it has been established that, in air-saturated aqueous solutions, peroxyl radicals CH 2HalOO (*) (Hal = halogen) derived from CH 2Cl 2 and CH 2Br 2 react with dimethyl selenide (Me 2Se), with k on the order of 7 x 10 (7) M (-1) s (-1), to form HCO 2H, CH 2O, CO 2, and CO as final products. An overall two-electron oxidation process leads directly to dimethyl selenoxide (Me 2SeO), along with oxyl radical CH 2HalO (*). The latter subsequently oxidizes another Me 2Se molecule by a much faster one-electron transfer mechanism, leading to the formation of equal yields of CH 2O and the dimer radical cation (Me 2Se) 2 (*+). In absolute terms, these yields amount to 18% and 28% of the CH 2ClO (*) and CH 2BrO (*) yields, respectively, at 1 mM Me 2Se. In competition, CH 2HalO (*) rearranges into (*)CH(OH)Hal. These C-centered radicals react further via two pathways: (a) Addition of an oxygen molecule leads to the corresponding peroxyl radicals, that is, species prone to decomposition into H (+)/O 2 (*-) and formylhalide, HC(O)Hal, which further degrades mostly to H (+)/Hal (-) and CO. (b) Elimination of HHal yields the formyl radical H-C(*)=O with a rate constant of about 6 x 10 (5) s (-1) for Hal = Cl. In an air-saturated solution, the predominant reaction pathway of the H-C(*)=O radical is addition of oxygen. The formylperoxyl radical HC(O)OO (*) thus formed reacts with Me 2Se via an overall two-electron transfer mechanism, giving additional Me 2SeO and formyloxyl radicals HC(O)O(*). The latter rearrange via a 1,2 H-atom shift into (*)C(O)OH, which reacts with O2 to give CO2 and O2(*)(-). The minor fraction of H-C(*)=O undergoes hydration, with an estimated rate constant of k approximately 2 x 10(5) s(-1). The resulting HC(*)(OH)2 radical, upon reaction with O2, yields HCO 2H and H (+)/O2(*-). Some of the conclusions about the reactions of halogenated alkoxyl radicals are supported by quantum chemical calculations [B3LYP/6-31G(d,p)] taking into account the influence of water as a dielectric continuum [by the self-consistent reaction field polarized continuum model (SCRF=PCM) technique]. Based on detailed product studies, mechanisms are proposed for the free-radical degradation of CH 2Cl 2 and CH 2Br 2 in the presence of oxygen and an electron donor (namely, Me 2Se in this study), and properties of the reactive intermediates are discussed.  相似文献   

9.
The visible absorption spectrum of the acetyl radical, CH(3)CO, was measured between 490 and 660 nm at 298 K using cavity ring-down spectroscopy. Gas-phase CH(3)CO radicals were produced using several methods including: (1) 248 nm pulsed laser photolysis of acetone (CH(3)C(O)CH(3)), methyl ethyl ketone (MEK, CH(3)C(O)CH(2)CH(3)), and biacetyl (CH(3)C(O)C(O)CH(3)), (2) Cl + CH(3)C(O)H --> CH(3)C(O) + HCl with Cl atoms produced via pulsed laser photolysis or in a discharge flow tube, and (3) OH + CH(3)C(O)H --> CH(3)CO + H(2)O with two different pulsed laser photolysis sources of OH radicals. The CH(3)CO absorption spectrum was assigned on the basis of the consistency of the spectra obtained from the different CH(3)CO sources and agreement of the measured rate coefficients for the reaction of the absorbing species with O(2) and O(3) with literature values for the CH(3)CO + O(2) + M and CH(3)CO + O(3) reactions. The CH(3)CO absorption spectrum between 490 and 660 nm has a broad peak centered near 535 nm and shows no discernible structure. The absorption cross section of CH(3)CO at 532 nm was measured to be (1.1 +/- 0.2) x 10(-19) cm(2) molecule(-1) (base e).  相似文献   

10.
The formation and the decomposition of chemically activated cyclopentoxy radicals from the c-C5H9 + O reaction have been studied in the gas phase at room temperature. Two different experimental arrangements have been used. Arrangement A consisted of a laser-flash photolysis set up combined with quantitative Fourier transform infrared spectroscopy and allowed the determination of the stable products at 4 mbar. The c-C5H9 radicals were produced via the reaction c-C5H10 + Cl with chlorine atoms from the photolysis of CFCl3; the O atoms were generated by photolysis of SO2. Arrangement B, a conventional discharge flow-reactor with molecular beam sampling, was used to determine the rate coefficient. Here, the hydrocarbon radicals (c-C5H9, C2H5, CH2OCH3) were produced via the reaction of atomic fluorine with c-C5H10, C2H6, and CH3OCH3, respectively, and detected by mass spectrometry after laser photoionization. For the c-C5H9 + O reaction, the relative contributions of intermediate formation (c-C5H9O) and direct abstraction (c-C5H8 + OH) were found to be 68 +/- 5 and 32 +/- 4%, respectively. The decomposition products of the chemically activated intermediate could be identified, and the following relative branching fractions were obtained: c-C5H8O + H (31 +/- 2%), CH2CH(CH2)2CHO + H (40 +/- 5%), 2 C2H4 + H + CO (17 +/- 5%), and C3H4O + C2H4 + H (12 +/- 5%). Additionally, the product formation of the c-C5H8 + O reaction was studied, and the following relative yields were obtained (mol %): C2H4, 24%; C3H4O, 18%; c-C5H8O, 30%; c-C5H8O, 23%; 4-pentenal, 5%. The rate coefficient of the c-C5H9 + O reaction was determined relative to the reactions C2H5 + O and CH3OCH2 + O leading to k = (1.73 +/- 0.05) x 10(14) cm3 mol(-1) s(-1). The experimental branching fractions are analyzed in terms of statistical rate theory with molecular and transition-state data from quantum chemical calculations, and high-pressure limiting Arrhenius parameters for the unimolecular decomposition reactions of C5H9O species are derived.  相似文献   

11.
利用热脱附(TPD)实验和X射线光电子能谱(XPS)研究了碘乙醇在Ni(100)表面的吸附和热反应过程. 实验结果表明, 碘乙醇在100 K温度下以两种分子的形式吸附在Ni(100)的表面, 既有碘原子端的吸附也有碘原子端和羟基端同时吸附在表面. 热分解反应发生在140 K, 伴有少量的乙烯和水产生. 碘乙醇在150 K经过C—I键断裂形成−O(H)CH2CH2−和羟乙基两种中间产物. 在160 K温度下−O(H)CH2CH2−脱去氢形成−OCH2CH2−氧金属环. 中间产物经过进一步分解氧化反应分别在210和250 K产生乙醛, 一部分乙醛从表面脱出, 而其余的则分解成氢气、水和CO.  相似文献   

12.
The dehydrogenation and decarbonylation of ethylene glycol and ethanol were studied using temperature programmed desorption (TPD) on Pt(111) and Ni/Pt(111) bimetallic surfaces, as probe reactions for the reforming of oxygenates for the production of H2 for fuel cells. Ethylene glycol reacted via dehydrogenation to form CO and H2, corresponding to the desired reforming reaction, and via total decomposition to produce C(ad), O(ad), and H2. Ethanol reacted by three reaction pathways, dehydrogenation, decarbonylation, and total decomposition, producing CO, H2, CH4, C(ad), and O(ad). Surfaces prepared by deposition of a monolayer of Ni on Pt(111) at 300 K, designated Ni-Pt-Pt(111), displayed increased reforming activity compared to Pt(111), subsurface monolayer Pt-Ni-Pt(111), and thick Ni/Pt(111). Reforming activity was correlated with the d-band center of the surfaces and displayed a linear trend for both ethylene glycol and ethanol, with activity increasing as the surface d-band center moved closer to the Fermi level. This trend was opposite to that previously observed for hydrogenation reactions, where increased activity occurred on subsurface monolayers as the d-band center shifted away from the Fermi level. Extrapolation of the correlation between activity and the surface d-band center of bimetallic systems may provide useful predictions for the selection and rational design of bimetallic catalysts for the reforming of oxygenates.  相似文献   

13.
The pharmacological effects of hydroxamate derivatives have been attributed not only to metal chelation or enzyme inhibition but also to their ability to serve as nitroxyl (HNO/NO(-)) and nitric oxide (NO) donors. However, the mechanism underlying the formation of these reactive nitrogen species is not clear and requires further elucidation. In the present study, one-electron oxidation of acetohydroxamic acid (aceto-HX) by (?)OH, (?)N(3), (?)NO(2), CO(3)(?-), and O(2)(?-) radicals was investigated using pulse radiolysis. It is demonstrated that only (?)OH, (?)N(3), and CO(3)(?-) radicals attack effectively and selectively the deprotonated form of the hydroxamate moiety, yielding the respective transient nitroxide radical. This nitroxide radical is a weak acid (CH(3)C(O)NHO(?), pK(a) = 9.1), which decays via a pH-dependent second-order reaction, 2k(2CH(3)C(O)NO(?-)) = (5.6 ± 0.4) × 10(7) M(-1) s(-1) (I = 0.002 M), 2k(CH(3)C(O)NO(?-) + CH(3)C(O)NHO(?)) = (8.3 ± 0.5) × 10(8) M(-1) s(-1)), and 2k(2CH(3)C(O)NHO(?)) = (8.7 ± 1.3) × 10(7) M(-1) s(-1). The second-order decomposition of the nitroxide yields transient species, one of which decomposes via a first-order reaction whose rate increases linearly upon increasing [CH(3)C(O)NHO(-)] or [OH(-)]. One-electron oxidation of aceto-HX under anoxia does not give rise to nitrite even after exposure to O(2), indicating that NO is not formed during the decomposition of the nitroxide radical. The presence of oxidants such as Tempol or O(2) during CH(3)C(O)NO(?-) decomposition had no effect on the reaction kinetics. Nevertheless, in the presence of Temopl, which does not react with NO but does with HNO, the formation of the hydroxylamine Tempol-H was observed. In the presence of O(2), about 60% of CH(3)C(O)NO(?-) yields ONOO(-), indicating that 30% NO(-) is formed in this system. It is concluded that under pulse radiolysis conditions, the transient nitroxide radicals derived from one-electron oxidation of aceto-HX decompose bimoleculary via a complex mechanism forming nitroxyl rather than NO.  相似文献   

14.
Pd催化甲醇裂解制氢的反应机理   总被引:1,自引:0,他引:1  
基于密度泛函理论(DFT), 研究了甲醇在Pd(111)面上首先发生O—H键断裂的反应历程(CH3OH(s)→CH3O(s)+H(s)→CH2O(s)+2H(s)→CHO(s)+3H(s)→CO(s)+4H(s)). 优化了裂解过程中各反应物、中间体、过渡态和产物的几何构型, 获得了反应路径上各物种的吸附能及各基元反应的活化能数据. 另外, 对甲醇发生C—O键断裂生成CH3(s)和OH(s)的分解过程也进行了模拟计算. 计算结果表明, O—H键的断裂(活化能为103.1 kJ·mol-1)比C—O键的断裂(活化能为249.3 kJ·mol-1)更容易; 甲醇在Pd(111)面上裂解的主要反应历程是: 甲醇首先发生O—H键的断裂, 生成甲氧基中间体(CH3O(s)), 然后甲氧基中间体再逐步脱氢生成CO(s)和H(s). 甲醇发生O—H键断裂的活化能为103.1 kJ·mol-1, 甲氧基上脱氢的活化能为106.7 kJ·mol-1, 两者均有可能是整个裂解反应的速控步骤.  相似文献   

15.
Reactions of ozone with some vinyl compounds of the general structure CH2=CH-X were studied in aqueous solution. Rate constants (in brackets, unit: dm3 mol-1 s-1) were determined: acrylonitrile (670), vinyl acetate (1.6 x 10(5)), vinylsulfonic acid (anion, 8.3 x 10(3)), vinyl phenylsulfonate (ca. 200), vinyl diethylphosphonate (3.3 x 10(3)), vinylphosphonic acid (acid, 1 x 10(4); mono-anion, 2.7 x 10(4); di-anion, 1 x 10(5)), vinyl bromide (1 x 10(4)). The main pathway leads to the formation of HOOCH2OH and HC(O)X. As measured by stopped flow with conductometric detection, the latter one may undergo rapid hydrolysis by water, e.g. HC(O)CN (3 s-1). Other HC(O)X hydrolyse much slower, e.g. HC(O)PO3(Et)2 (7 x 10(-3) s-1) and HC(O)P(OH)O2- (too slow to be measured). The OH(-)-induced hydrolyses range from ca. 5 dm3 mol-1 s-1 [HC(O)PO(3)2-] to 3.8 x 10(5) dm3 mol-1 s-1 [HC(O)CN]. HC(O)Br mainly decomposes rapidly (too fast for the determination of the rate) into CO and Br- plus H+, and the competing hydrolysis is of minor importance (3.7%). The slow hydrolysis of HC(O)PO(3)2- at pH 10.2, where HOOCH2OH is rapidly decomposed into CH2O plus H2O2, allows an H2O2-induced decomposition (k = 260 dm3 mol-1 s-1) to take place. Formate and phosphate are the final products.  相似文献   

16.
Ethyl propionate is a model for fatty acid ethyl esters used as first-generation biodiesel. The atmospheric chemistry of ethyl propionate was investigated at 980 mbar total pressure. Relative rate measurements in 980 mbar N(2) at 293 ± 0.5 K were used to determine rate constants of k(C(2)H(5)C(O)OC(2)H(5) + Cl) = (3.11 ± 0.35) × 10(-11), k(CH(3)CHClC(O)OC(2)H(5) + Cl) = (7.43 ± 0.83) × 10(-12), and k(C(2)H(5)C(O)OC(2)H(5) + OH) = (2.14 ± 0.21) × 10(-12) cm(3) molecule(-1) s(-1). At 273-313 K, a negative Arrhenius activation energy of -3 kJ mol(-1) is observed.. The chlorine atom-initiated oxidation of ethyl propionate in 980 mbar N(2) gave the following products (stoichiometric yields): ClCH(2)CH(2)C(O)OC(2)H(5) (0.204 ± 0.031), CH(3)CHClC(O)OC(2)H(5) (0.251 ± 0.040), and C(2)H(5)C(O)OCHClCH(3) (0.481 ± 0.088). The chlorine atom-initiated oxidation of ethyl propionate in 980 mbar of N(2)/O(2) (with and without NO(x)) gave the following products: ethyl pyruvate (CH(3)C(O)C(O)OC(2)H(5)), propionic acid (C(2)H(5)C(O)OH), formaldehyde (HCHO), and, in the presence of NO(x), PAN (CH(3)C(O)OONO(2)). The lack of acetaldehyde as a product suggests that the CH(3)CH(O)C(O)OC(2)H(5) radical favors isomerization over decomposition. From the observed product yields, we conclude that H-abstraction by chlorine atoms from ethyl propionate occurs 20.4 ± 3.1%, 25.1 ± 4.0%, and 48.1 ± 8.8% from the CH(3)-, -CH(2)-, and -OCH(2)- groups, respectively. The rate constant and branching ratios for the reaction between ethyl propionate and the OH radical were investigated theoretically using quantum mechanical calculations and transition state theory. The stationary points along the reaction path were optimized using the CCSD(T)-F12/VDZ-F12//BH&HLYP/aug-cc-pVTZ level of theory; this model showed that OH radicals abstract hydrogen atoms primarily from the -OCH(2)- group (80%).  相似文献   

17.
We have used a heated 2 cm × 1 mm SiC microtubular (μtubular) reactor to decompose acetaldehyde: CH(3)CHO + Δ → products. Thermal decomposition is followed at pressures of 75-150 Torr and at temperatures up to 1675 K, conditions that correspond to residence times of roughly 50-100 μs in the μtubular reactor. The acetaldehyde decomposition products are identified by two independent techniques: vacuum ultraviolet photoionization mass spectroscopy (PIMS) and infrared (IR) absorption spectroscopy after isolation in a cryogenic matrix. Besides CH(3)CHO, we have studied three isotopologues, CH(3)CDO, CD(3)CHO, and CD(3)CDO. We have identified the thermal decomposition products CH(3) (PIMS), CO (IR, PIMS), H (PIMS), H(2) (PIMS), CH(2)CO (IR, PIMS), CH(2)=CHOH (IR, PIMS), H(2)O (IR, PIMS), and HC≡CH (IR, PIMS). Plausible evidence has been found to support the idea that there are at least three different thermal decomposition pathways for CH(3)CHO; namely, radical decomposition: CH(3)CHO + Δ → CH(3) + [HCO] → CH(3) + H + CO; elimination: CH(3)CHO + Δ → H(2) + CH(2)=C=O; isomerization∕elimination: CH(3)CHO + Δ → [CH(2)=CH-OH] → HC≡CH + H(2)O. An interesting result is that both PIMS and IR spectroscopy show compelling evidence for the participation of vinylidene, CH(2)=C:, as an intermediate in the decomposition of vinyl alcohol: CH(2)=CH-OH + Δ → [CH(2)=C:] + H(2)O → HC≡CH + H(2)O.  相似文献   

18.
Solid-state decomposition of [V3O(O2CPh)6(H2O)3]Cl at 300 degrees C followed by alcoholysis of the product gives the new vanadium complexes [V6O6(PhCO2)6(CH3O)6(CH3OH)3] (1), [V6O6(PhCO2)6(C2H5O)6(C2H5OH)3] (2), [V6O6(PhCO2)6(C3H7O)6(C3H7OH)3] (3), [V6O6(PhCO2)6(C4H9O)6(C4H9OH)3] (4) and [V4O4(OCH3)6(O2CPh)2(HOCH3)2] (5). Complexes 2, 3 and 5 have been crystallographically characterised. DC magnetic susceptibility studies on complex shows antiferromagnetic coupling leading to a S = 0 spin ground state.  相似文献   

19.
Relative rate techniques were used to study the kinetics of the reactions of Cl atoms and OH radicals with ethylene glycol diacetate, CH3C(O)O(CH2)2OC(O)CH3, in 700 Torr of N2/O2 diluent at 296 K. The rate constants measured were k(Cl + CH3C(O)O(CH2)2OC(O)CH3) = (5.7 +/- 1.1) x 10(-12) and k(OH + CH3C(O)O(CH2)2OC(O)CH3) = (2.36 +/- 0.34) x 10(-12) cm3 molecule-1 s-1. Product studies of the Cl atom initiated oxidation of ethylene glycol diacetate in the absence of NO in 700 Torr of O2/N2 diluent at 296 K show the primary products to be CH3C(O)OC(O)CH2OC(O)CH3, CH3C(O)OC(O)H, and CH3C(O)OH. Product studies of the Cl atom initiated oxidation of ethylene glycol diacetate in the presence of NO in 700 Torr of O2/N2 diluent at 296 K show the primary products to be CH3C(O)OC(O)H and CH3C(O)OH. The CH3C(O)OCH2O* radical is formed during the Cl atom initiated oxidation of ethylene glycol diacetate, and two loss mechanisms were identified: reaction with O2 to give CH3C(O)OC(O)H and alpha-ester rearrangement to give CH3C(O)OH and HC(O) radicals. The reaction of CH3C(O)OCH2O2* with NO gives chemically activated CH3C(O)OCH2O* radicals which are more likely to undergo decomposition via the alpha-ester rearrangement than CH3C(O)OCH2O* radicals produced in the peroxy radical self-reaction.  相似文献   

20.
The formation of negative ions following electron impact to ethanol (CH(3)CH(2)OH) and trifluoroethanol (CF(3)CH(2)OH) is studied in the gas phase by means of a crossed electron-molecular beam experiment and in the condensed phase via Electron Stimulated Desorption (ESD) of fragment ions from the corresponding molecular films under UHV conditions. Gas phase ethanol exhibits two pronounced resonances, located at 5.5 eV and 8.2 eV, associated with a remarkable selectivity in the decomposition of the precursor ion. While the low energy resonance exclusively decomposes into O(-), that at higher energy generates OH(-) and a comparatively small signal of [CH(3)CH(2)O](-) due to the loss of a neutral hydrogen. CF(3)CH(2)OH shows a completely different behaviour, as now an intense feature at 1.7 eV appears associated with the loss of a neutral hydrogen atom exclusively occurring at the O site. The H(-) formation from the gas phase compounds is below the detection limit of the present experiment, while in ESD from 3 MonoLayer (ML) films of CH(3)CH(2)OH and CF(3)CH(2)OH the most intense fragment is H(-), appearing from a broad resonant feature between 7 and 12 eV. With CF(3)CH(2)OH, by using the isotopically-labelled analogues CF(3)CD(2)OH and CF(3)CH(2)OD it can be shown that this feature consists of two resonances, one located at 8 eV leading to H(-)/D(-) loss from the O site and a second resonance located at 10 eV leading to the loss of H(-)/D(-) from the CH(2) site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号