首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mahrwald R 《Organic letters》2000,2(25):4011-4012
Ligand exchange of titanium(IV) alkoxides with alpha-hydroxy acids presents an unexpected and novel approach to enantioselective aldol additions of aldehydes and ketones. The aldol products were isolated in a high degree of syn-diastereoselectivity. High enantioselectivities were observed by using simple optically pure alpha-hydroxy acids in this novel aldol addition.  相似文献   

2.
Rohr K  Mahrwald R 《Organic letters》2012,14(8):2180-2183
Isoleucine-catalyzed direct enantioselective aldol additions between enolizable aldehydes are reported. Intermediate acetal structures dictate the configurative outcome and were supported by a hydrogen bond. This direct isoleucine-catalyzed aldol addition represents a welcome complement to both proline- and histidine-catalyzed aldol additions of enolizable aldehydes.  相似文献   

3.
Three different modes of hydroformylation/aldol reaction sequences involving either acid-catalysed aldol reactions, Mukaiyama aldol addition of pre-formed enolsilanes or aldol addition of in situ generated boron enolates can be applied to unsaturated ketones and ketoesters to afford the corresponding carbocyclic aldol adducts in good yields proceeding through the intermediate activated ketoaldehydes. In selected cases, complimentary, synthetically useful diastereoselectivities were observed in the products.  相似文献   

4.
The development of enantioselective aldol reactions catalyzed by chiral phosphine oxides is described. The aldol reactions presented herein do not require the prior preparation of the masked enol ethers from carbonyl compounds as aldol donors. The reactions proceed through a trichlorosilyl enol ether intermediate, formed in situ from carbonyl compounds, which then acts as the aldol donor. Phosphine oxides activate the trichlorosilyl enol ethers to afford the aldol adducts with high stereoselectivities. This procedure was used to realize a directed cross‐aldol reaction between ketones and two types of double aldol reactions (a reaction at one/two α position(s) of a carbonyl group) with high diastereo‐ and enantioselectivities.  相似文献   

5.
The dominated approaches for asymmetric aldol reactions have primarily focused on the aldol carbon–carbon bond‐forming events. Here we postulate and develop a new catalytic strategy that seeks to modulate the reaction thermodynamics and control the product enantioselectivities via post‐aldol processes. Specifically, an NHC catalyst is used to activate a masked enolate substrate (vinyl carbonate) to promote the aldol reaction in a non‐enantioselective manner. This reversible aldol event is subsequently followed by an enantioselective acylative kinetic resolution that is mediated by the same (chiral) NHC catalyst without introducing any additional substance. This post‐aldol process takes care of the enantioselectivity issues and drives the otherwise reversible aldol reaction toward a complete conversion. The acylated aldol products bearing quaternary/tetrasubstituted carbon stereogenic centers are formed in good yields and high optical purities.  相似文献   

6.
Asymmetric Mukaiyama aldol reactions in aqueous media (water-ethanol = 9:1) were catalyzed by chiral gallium catalysts with semi-crown ligands to give aldol products with good yields, syn-diastereoselectivities and enantioselectivities.  相似文献   

7.
We report the first enantioselective reductive aldol couplings of vinyl ketones, which were achieved through the design of a novel monodentate TADDOL-like phosphonite ligand. Specifically, hydrogenation of commercially available methyl vinyl ketone (MVK) or ethyl vinyl ketone (EVK) in the presence of aldehydes 1a-7a using cationic rhodium catalysts modified by chiral TADDOL-like phosphonite ligands AP-I and AP-IV produces aldol adducts 1b-7b and 1c-7c with excellent control of relative and absolute stereochemistry. The absolute stereochemical assignments of the aldol adducts are made in analogy to that determined for the 5-bromophthalimido derivative of aldol adduct 1b and the 2-bromo-5-nitrobenzoate of 3b, which were established by single-crystal X-ray diffraction analysis using the anomalous dispersion method.  相似文献   

8.
The chemoselective generation of aldehyde‐derived enolates to realize an aldehyde? aldehyde cross‐aldol reaction is described. A combined Rh/dippf system efficiently promoted the isomerization/aldol sequence by using primary allylic, homoallylic, and bishomoallylic alcohols; secondary allylic and homoallylic alcohols; and trialkoxyboranes that were derived from primary allylic and homoallylic alcohols. The reaction proceeded at ambient temperature under base‐free conditions, thus giving cross‐aldol products with high chemoselectivity. Mechanistic studies, as well as its application to double‐aldol processes under protecting‐group‐free conditions, are also described.  相似文献   

9.
Hexa‐ and nonanuclear titanium complexes were obtained by self‐assembly of titanium(IV)‐tert‐butoxide and D ‐mandelic acid. Suitable single crystals of these complexes were characterized by X‐ray structure analysis. When used with these complexes, aldol adducts were isolated with a high degree of regioselectivity in direct aldol additions of aromatic and aliphatic aldehydes to functionalized unsymmetrical ketones. High syn‐diastereoselectivities were obtained in aldol additions of enolizable aldehydes with hydroxyacetone and methoxyacetone. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

10.
Asymmetric aldol additions using chlorotitanium enolates of N-acyloxazolidinone, oxazolidinethione, and thiazolidinethione propionates proceed with high diastereoselectivity for the Evans or non-Evans syn product depending on the nature and amount of the base used. With 1 equiv of titanium tetrachloride and 2 equiv of (-)-sparteine as the base or 1 equiv of (-)-sparteine and 1 equiv of N-methyl-2-pyrrolidinone, selectivities of 97:3 to > 99:1 were obtained for the Evans syn aldol products using N-propionyl oxazolidinones, oxazolidinethiones, and thiazolidinethiones. The non-Evans syn aldol adducts are available with the oxazolidinethione and thiazolidinethiones by altering the Lewis acid/amine base ratios. The change in facial selectivity in the aldol additions is proposed to be a result of switching of mechanistic pathways between chelated and nonchelated transition states. The auxiliaries can be reductively removed or cleaved by nucleophilic acyl substitution. Iterative aldol sequences with high diastereoselectivity can also be accomplished.  相似文献   

11.
The lithium anionic species generated from O-alkanoylTEMPOs upon treatment with LDA were first employed as a nucleophile for alkylation, Michael addition, direct aldol reaction, and others. The alkylation occurred smoothly at the methylene carbon, and no alkylation was found in the isobutyryl analogue, while silylation was scarcely attainable. Substitutions of the heteroatom were achieved by reaction with PhSSPh and DEAD. The reactivity of these anionic species is successfully extended to aldol reactions in which moderate anti or syn selectivity was executed with propionyl derivatives. Tandem Michael addition of lithium amide followed by aldol reaction was performed on the O-crotonoylTEMPOs.  相似文献   

12.
The steric regulations imparted by the substituent at N1 in lithium mediated asymmetric aldol reactions of conformationally restricted 3-aryl-1-((S)-1-phenylethyl)-2-thioxotetrahydropyrimidin-4(1H)-ones governed the formation of anti aldol adducts, by a kinetic reaction pathway. The preferential formation of the anti aldol diastereomers was also assisted by the steric effects of the electrophile through diastereofacial selection while the electronic effects of the aryl group at N3 remained subtle. Incorporation of an endocyclic methyl group at C6 witnessed the diastereoselective formation of an anti aldol adduct by regulation of π-facial selectivity. The absolute configurations of the aldol adducts were determined by computational calculations and NMR experiments, and confirmed by single crystal X-ray analysis.  相似文献   

13.
Chiral organocatalysts of 4-adamantane amide based on L-proline with double hydrogen potential were synthesized and used in asymmetric aldol reactions. The reactions were evaluated in toluene under -20℃. A series of aldol products was obtained from moderate to good yields(up to 98%) with excellent diastereoselectivities(up to >99:1) and enantioselectivities(up to >99%). The aldol products in the system were separated by α-cyclodextrin via host-guest interaction and determined by chiral HPLC. The catalyst could be reused up to five times. The 4-substitution position played an important role in diastereoselectivity and enantioselectivity.  相似文献   

14.
Water was found to be a suitable solvent for the l-prolinethioamide catalysed aldol reaction of various cyclic ketones with aromatic aldehydes. Treatment of 4-nitrobenzaldehyde with as little as 1.2 equiv. of cyclohexanone in the presence of the protonated catalyst 1-TFA, afforded aldol products in high yields (up to 97%) with high diastereo- and enantioselectivity (up to >5 : 95 dr and 98% ee). The use of a high excess of ketone was avoided by conducting the aldol addition in the presence of water. Furthermore, different 'salting-out' and 'salting-in' salts were investigated and it was proven that the rate of acceleration and the stereochemical outcome of the reaction are affected by hydrophobic aggregation. Scope and limitation studies revealed that electron deficient aldehydes afforded aldol products with high stereoselectivity in the presence of 1-Cl(2)CHCO(2)H. It was shown that various cyclic ketones, under the conditions found, gave aldol products with fair yields, even if they are used in substoichiometric amounts (1.2 to 2.0 equiv.).  相似文献   

15.
Fluorogenic aldehydes or probes for monitoring of the progress of aldol reactions have been developed. Fluorescence of benzaldehydes conjugated with aryl groups via a double or triple bond and of their aldol products was evaluated in aqueous solutions. Based on the fluorescence, fluorogenic aldol reaction substrates and retro-aldol reaction substrates were identified. Use of the probe system with optimal fluorescence properties for aldol reactions was demonstrated in assays with purified protein catalysts and with overproduced crude protein catalysts in cell lysates.  相似文献   

16.
Han SB  Hassan A  Krische MJ 《Synthesis》2008,2008(17):2669-2679
An overview of studies on hydrogenative reductive aldol addition is presented. By simply hydrogenating enones in the presence of aldehydes at ambient temperature and pressure, aldol adducts are generated under neutral conditions in the absence of any stoichiometric byproducts. Using cationic rhodium complexes modified by tri(2-furyl)phosphine, highly syn-diastereoselective reductive aldol additions of vinyl ketones are achieved. Finally, using novel monodentate TADDOL-like phosphonite ligands, the first highly diastereo- and enantioselective reductive aldol couplings of vinyl ketones were devised. These studies, along with other works from our laboratory, demonstrate that organometallics arising transiently in the course of catalytic hydrogenation offer byproduct-free alternatives to preformed organometallic reagents employed in classical carbonyl addition processes.  相似文献   

17.
《Tetrahedron: Asymmetry》2006,17(12):1831-1841
Oxadiazinanones derived from (1R,2S)-ephedrine and (1R,2S)-norephedrine were employed in the asymmetric α-halo aldol reaction. The optimized yields and diastereoselectivities for the ephedrine based oxadiazinanone aldol reaction ranged from fair to good. The ephedrine based aldol adducts were hydrolyzed to afford the α-bromo-β-hydroxycarboxylic acids. The absolute stereochemistry and enantiomeric purity of these products were determined by chiral HPLC and specific rotation measurements.  相似文献   

18.
The enantiocontrolled total syntheses of all the stereoisomers of a myxobacterial antibiotic, cystothiazole A, are described. The natural syn stereochemistry at the C4-C5 position was controlled by the asymmetric Evans aldol process, whereas the anti relationship was introduced by a modified Evans aldol methodology. Starting with a known aldehyde, the common substrate of the aldol reactions, cystothiazole A and its three stereoisomers were synthesized in 9 steps. All three stereoisomers did not show antifungal activity even at a dosage 2500-fold that of cystothiazole A.  相似文献   

19.
Asymmetric aldol reactions were conducted with the titanium enolate of N(3)-hydrocinnamoyl-3,4,5,6-tetrahydro-2H-1,3,4-oxadiazin-2-one to afford aldol adducts 5a-j. The dominant product of the asymmetric aldol reaction was the non-Evans syn adduct as determined by (1)H NMR spectroscopy and X-ray crystallography. When evaluating the (1)H NMR spectra of adducts 5a-j, a highly shielded signal with an average chemical shift of 0.05 ppm was observed. This signal was readily determined to be the C(5)-methyl group of the oxadiazinone. It is presumed that the overall conformation adopted by the aldol adducts in solution places an aromatic ring of the N(3)-substituent in close proximity to the C(5)-methyl group. An investigation of this conformational preference is conducted employing (1)H NMR spectroscopy, X-ray crystallography, and computational methods.  相似文献   

20.
Complex diazo compounds containing propargyl alcohol functional group were prepared by an efficient aldol reaction of alkynyl aldehydes and ethyl diazoacetate in good yields. Piperidine was utilized as a base to catalyze this transformation. The aldol reaction showed broad substrate scopes and good functional group compatibility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号