首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Coverage-dependent heats of adsorption and sticking probabilities for oxygen on Ni[211] have been measured at 300 K using single-crystal adsorption calorimetry. The data are consistent with a switch from dissociative chemisorption at low coverage to oxide formation above 2 ML adatom coverage. The initial heat of adsorption is 620 kJ mol(-)(1), considerably higher than for any low Miller index nickel surface; this is attributed to the presence of low coordination step atoms that are preferably occupied up to 1 ML. As the coverage increases, the heat is found to drop very rapidly, indicating the presence of strong lateral adatom repulsions, which ultimately drive a transition from the chemisorption regime to oxide film formation at higher coverage. The shape of the coverage-dependent sticking probability is consistent with a direct adsorption mechanism at low coverage. At higher coverage, the transition between the chemisorption and oxidation regimes is relatively complex compared with low Miller index nickel surfaces. This is discussed in terms of the influence of the step sites on the [211] surface.  相似文献   

2.
The heat of adsorption and sticking probability of cyclohexene on Pt(111) were measured as a function of coverage using single-crystal adsorption calorimetry in the temperature range from 100 to 300 K. At 100 K, cyclohexene adsorbs as intact di-sigma bonded cyclohexene on Pt(111), and the heat of adsorption is well described by a second-order polynomial (130 - 47 theta - 1250 theta(2)) kJ/mol, yielding a standard enthalpy of formation of di-sigma bonded cyclohexene on Pt(111) at low coverages of -135 kJ/mol and a C-Pt sigma bond strength of 205 kJ/mol. At 281 K, cyclohexene dehydrogenates upon adsorption, forming adsorbed 2-cyclohexenyl (c-C6H(9,a)) and adsorbed hydrogen, and the heat of adsorption is well described by another second-order polynomial (174 - 700 theta + 761 theta(2)) kJ/mol. This yields a standard enthalpy of formation of adsorbed 2-cyclohexenyl on Pt(111) at a low coverage of -143 kJ/mol. At coverages below 0.10 ML, the sticking probability of cyclohexene on Pt(111) is close to unity (>0.95), independent of temperature.  相似文献   

3.
The heat of adsorption of naphthalene on Pt(111) at 300 K was measured with single-crystal adsorption calorimetry. The heat of adsorption on the ideal, defect-free surface is estimated to be (300 - 34 - 199(2)) kJ/mol. From this, a C-Pt bond energy for aromatic hydrocarbons on Pt(111) of approximately 30 kJ/mol is estimated, consistent with earlier results for benzene on Pt(111). There is higher heat of adsorption at very low coverage, attributed to step sites where the adsorption heat is >/=330 kJ/mol. Saturation coverage, = 1 ML, corresponds to 1.55 x 10(14) molecules/cm(2). Sticking probability measurements of naphthalene on Pt(111) give a high initial value of 1.0 and a Kisliuk-type coverage dependence that implies precursor-mediated sticking. The ratio of the hopping rate to the desorption rate of this precursor is approximately 51. Naphthalene adsorbs transiently on top of chemisorbed naphthalene molecules with a heat of adsorption of 83-87 kJ/mol.  相似文献   

4.
The dynamics of H(2)O adsorption on Pt{110}-(1 x 2) is studied using supersonic molecular beam and temperature programed desorption techniques. The sticking probabilities are measured using the King and Wells method at a surface temperature of 165 K. The absolute initial sticking probability s(0) of H(2)O is 0.54+/-0.03 for an incident kinetic energy of 27 kJmol. However, an unusual molecular beam flux dependence on s(0) is also found. At low water coverage (theta<1), the sticking probability is independent of coverage due either to diffusion in an extrinsic precursor state formed above bilayer islands or to incorporation into the islands. We define theta=1 as the water coverage when the dissociative sticking probability of D(2) on a surface predosed with water has dropped to zero. The slow falling H(2)O sticking probability at theta>1 results from compression of the bilayer and the formation of multilayers. Temperature programed desorption of water shows fractional order kinetics consistent with hydrogen-bonded islands on the surface. A remarkable dependence of the initial sticking probability on the translational (1-27 kJ/mol) and internal energies of water is observed: s(0) is found to be essentially a step function of translational energy, increasing fivefold at a threshold energy of 5 kJ/mol. The threshold migrates to higher energies with increasing nozzle temperature (300-700 K). We conclude that both rotational state and rotational alignment of the water molecules in the seeded supersonic expansion are implicated in dictating the adsorption process.  相似文献   

5.
The adsorption of Ca on the MgO(100) surface at 300 K has been studied using microcalorimetry, in combination with LEED, AES, ISS, work function, sticking probability measurements, and density functional theory (DFT) calculations. The MgO(100) thin films (approximately 4 nm thick) were grown epitaxially on a 1 microm thick Mo(100) single-crystal. The sticking probability of Ca on MgO(100) at 300 K is unity. On the basis of AES and ISS measurements, it was determined that Ca grows mainly as 3D particles on the MgO(100) surface with a density of approximately 1 x 10(12) islands/cm2. Ca adsorbs initially at defect sites with a very high heat of adsorption (approximately 410 kJ/mol). DFT calculations attribute this high initial heat to Ca binding to kink sites (376 kJ/mol), step sites (205 kJ/mol), and lower concentrations of stronger binding sites. The heat of adsorption decreases rapidly with coverage, reaching a minimum of 162 kJ/mol at approximately 0.3 ML, where Ca is mainly adding to small 3D Ca clusters. Afterward, it increases to the value of bulk Ca heat of sublimation (178 kJ/mol) at approximately 1.2 ML, attributed to the increase in stability with increasing Ca particle size. A 1.0 eV decrease of the work function with Ca coverage from 0 to 0.3 ML indicates that Ca adsorbed at defects is cationic, in agreement with calculations showing that Ca donates electron density to the MgO. Light ion sputtering of the MgO(100) surface generates point defects, but these do not change the heat of adsorption versus coverage, implying that they do not nucleate Ca particles. Oxygen vacancies are a likely candidate; DFT calculations show that F and F+ center vacancies bind Ca more weakly than terrace sites. More extensive sputtering creates extended defects (such as steps and kinks) that adsorb Ca with heats of adsorption up to approximately 400 kJ/mol, similar to that at the intrinsic defect sites.  相似文献   

6.
The time-dependent chemisorption of 2-chlorophenol on a fumed silica surface was studied in situ from 200 to 500 degrees C using a temperature-controlled dosing cell and FTIR absorption spectroscopy. 2-Chlorophenol was found to chemisorb at isolated and geminal surface hydroxyl sites. 2-Chlorophenol chemisorption and subsequent surface oxidation resulted in a mixture of chlorophenolate and partial oxidation products, such as formates and acetates. The rates of chemisorption were measured, and the activation energy of adsorption was found to be 15 +/- 4 kJ mol(-1) for a fast, initial reaction and 22 +/- 2 kJ mol(-1) for a slower reaction at higher surface coverage. This work was motivated by the observation that combustion-generated fly ash mediates the formation of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/F) at temperatures between 250 and 450 degrees C. Although transition metals such as copper are known to catalyze or mediate this reaction, silica is the major component of fly ash and chemisorption at higher concentration surface sites of silica must have a significant impact on the surface-mediated PCDD/F formation on fly ash surfaces.  相似文献   

7.
The gas-surface reaction dynamics of NO impinging on an iron(II) phthalocyanine (FePc) monolayer were investigated using King and Wells sticking measurements. The initial sticking probability was measured as a function of both incident molecular beam energy (0.09-0.4 eV) and surface temperature (100-300 K). NO adsorption onto FePc saturates at 3% of a monolayer for all incident beam energies and surface temperatures, suggesting that the final chemisorption site is confined to the Fe metal centers. At low surface temperature and low incident beam energy, the initial sticking probability is 40% and decreases linearly with increasing beam energy and surface temperature. The results are consistent with the NO molecule sticking onto the FePc molecules via physisorption to the aromatics followed by diffusion to the Fe metal center, or precursor-mediated chemisorption. The adsorption mechanism of NO onto FePc was confirmed by control studies of NO sticking onto metal-free H2Pc, inert Au111, and reactive Al111.  相似文献   

8.
The adsorption of Ca atoms on pristine and electron-irradiated poly(methyl methacrylate) (PMMA) surfaces at 300 K has been studied by adsorption microcalorimetry, atomic beam/surface scattering, and low-energy He+ ion scattering spectroscopy (ISS). On pristine PMMA, the initial sticking probability of Ca is 0.5, increasing quickly with Ca coverage. Below 0.5 ML, the heat of adsorption is 730-780 kJ/mol, much higher than Ca's sublimation energy (178 kJ/mol). The Ca here is invisible to ISS, which is attributed to Ca binding to ester groups below the CH3/CH2-terminated PMMA surface. The adsorption energy increases with coverage, suggesting attractions between neighboring Ca-ester complexes. Above 0.5 ML, Ca starts to grow as three-dimensional (3D) Ca clusters on top of the surface, which dominate growth after 2 ML. It is proposed that each Ca reacts with two esters to form the Ca carboxylate of PMMA, because this reaction's heat would be close to that observed. The total amount of Ca that binds to subsurface sites is estimated from the integral heat of adsorption to involve 4-6 layers of ester groups. Exposing the PMMA surface to electrons increases Ca's initial sticking probability but lowers its adsorption energy. This is attributed to electron-induced defects acting as nucleation sites for 3D Ca islands, whose growth now competes kinetically with Ca diffusing to subsurface esters. Consequently, only two layers of subsurface esters get populated at saturation. The heat eventually reaches Ca's bulk heat of sublimation on all PMMA surfaces, where pure, bulk-like Ca thin films form.  相似文献   

9.
The adsorption of carbon monoxide on an either unpromoted or potassium-promoted bulk iron catalyst was investigated at 303 K and 613 K by means of pulse chemisorption, adsorption calorimetry, temperature-programmed desorption and temperature-programmed surface reaction in hydrogen. CO was found to adsorb mainly molecularly in the absence of H(2) at 303 K, whereas the presence of H(2) induced CO dissociation at higher temperatures leading to the formation of CH(4) and H(2)O. The hydrogenation of atomic oxygen chemisorbed on metallic iron was found to occur faster than the hydrogenation of atomically adsorbed carbon. At 613 K CO adsorption occurred only dissociatively followed by recombinative CO(2) formation according to C(ads) + 2O(ads)→ CO(2(g)). The presence of the potassium promoter on the catalyst surface led to an increasing strength of the Fe-C bond both at 303 K and 613 K: the initial differential heat of molecular CO adsorption on the pure iron catalyst at 303 K amounted to 102 kJ mol(-1), whereas it increased to 110 kJ mol(-1) on the potassium-promoted sample, and the initial differential heat of dissociative CO adsorption on the unpromoted iron catalyst at 613 K amounted to 165 kJ mol(-1), which increased to 225 kJ mol(-1) in the presence of potassium. The calorimetric CO adsorption experiments also reveal a change of the energetic distribution of the CO adsorption sites present on the catalyst surface induced by the potassium promoter, which was found to block a fraction of the CO adsorption sites.  相似文献   

10.
The sticking probability for hydrogen on films of Co, Ni, Cu, Ru, Rh, Pd, Ir, and Pt supported on graphite has been measured at a hydrogen pressure of 1 bar in the temperature range 40-200 degrees C. The sticking probability is found to increase in the order Ni, Co, Ir, Pd, Pt, Rh, and Ru at temperatures below 150 degrees C, whereas at higher temperatures, the sticking probability for Pd is higher than for Pt. The sticking probability for Cu is below the detection limit of the measurement. The measured sticking probabilities are slightly lower than those obtained at high hydrogen coverage under ultrahigh vacuum conditions. This could be a consequence of the higher hydrogen pressure used here. The apparent desorption energies extracted from the steady-state desorption rate are found to agree reasonably well with published values for the heat of adsorption at high coverage. However, the sticking probability is not related in a simple way to published values for the heat of adsorption at low coverage, with Ru and Rh giving exceptionally high values for the sticking probability. It is suggested that this is due to the presence of adsorption sites with very low desorption energy on Ru and Rh.  相似文献   

11.
12.
The chemisorption of hydrogen on porous chromium oxide was studied at temperatures up to 723 K under the conditions of controlled oxygen, hydrogen, and water contents in the samples. The molar heats of chemisorption were measured at temperatures up to 473 K. Hydrogen was found to be chemisorbed (310 kJ/mol) in the form of water and absorbed into oxide volume (165 kJ/mol) in the form of coordination bound atoms. Changes in the molar heat of the processes during chemisorption were caused by changes in the ratio between chemisorption and sorption. The phenomena observed and quantitative results could be explained by simple Langmuir concepts without assumptions of surface heterogeneity.  相似文献   

13.
The heat of adsorption and sticking probability of CO on well-defined Pd nanoparticles were measured as a function of particle size using single crystal adsorption microcalorimetry. Pd particles of different average sizes ranging from 120 to 4900 atoms per particle (or from 1.8 to 8 nm) and Pd(111) were used that were supported on a model in situ grown Fe(3)O(4)/Pt(111) oxide film. To precisely quantify the adsorption energies, the reflectivities of the investigated model surfaces were measured as a function of the thickness of the Fe(3)O(4) oxide layer and the amount of deposited Pd. A substantial decrease of the binding energy of CO was found with decreasing particle size. Initial heat of adsorption obtained on the virtually adsorbate-free surface was observed to be reduced by about 20-40 kJ mol(-1) on the smallest 1.8 nm sized Pd particles as compared to the larger Pd clusters and the extended Pd(111) single crystal surface. This effect is discussed in terms of the size-dependent properties of the Pd nanoparticles. The CO adsorption kinetics indicates a strong enhancement of the adsorbate flux onto the metal particles due to a capture zone effect, which involves trapping of adsorbates on the support and diffusion to metal clusters. The CO adsorption rate was found to be enhanced by a factor of ~8 for the smallest 1.8 nm sized particles and by ~1.4 for the particles of 7-8 nm size.  相似文献   

14.
利用分子束技术改变甲烷的平动能E_k来研究E_k及其法向分量E_n对甲烷在Ni表面及La薄膜上激活解离吸附的影响。对CH_4/Ni及CH_4/La系统, 当甲烷的平动能E_k分别低于58.5 kJ·mol~(-1)及52.3 kJ·mol~(-1)时, 没观察到甲烷的解离吸附。当甲烷的平动能超过此阈值时, 即对CH_4/Ni系统, 当Ek=58.5增至63.8 kJ·mol~(-1)时, 初始沾着几率s_0由0至0.54线性增加; 对CH_4/La系统, 当E_k=52.3增至63.8 kJ·mol~(-1)时, S_0由0至0.49线性增加。这些结果表明, 两个系统的化学吸附是不经过前趋态的直接化学吸附。最后求出CH_4/Ni, CH_4/La系统的表观活化能分别为46.8 kJ·mol~(-1)和38.1 kJ·mol~(-1)。  相似文献   

15.
Here, we report on a new aspect of the adsorption of Br- on the surface of gold. The adsorption of dodecyltrimethylammonium bromide (C12TABr) from aqueous solutions onto macroporous gold particles was studied by continuous flow frontal analysis solid/liquid chromatography and flow adsorption microcalorimetry. The material balance and enthalpy balance of adsorption and the change in the solution pH were measured simultaneously. Initially, Br- is irreversibly bound to high-affinity surface sites counterbalanced by the adsorption of H+ from the aqueous phase. The surface speciation is accompanied by the formation of C12TAOH, which in turn results in a significant pH increase in the bulk solution. The net process was found to be strongly exothermic (-280 kJ.mol(-1)), which is indicative of the occurrence of chemisorption. The specific adsorption of Br- is followed by the reversible adsorption of C12TABr to produce a firmly bound monolayer in a head-to-surface arrangement (-53 kJ.mol(-1)). In a relatively narrow range of the surface coverage, various composite structures may develop on the top layer and eventually transform to full-cylindrical surface aggregates. The surface aggregation was found to be reversible, with an enthalpy change of -11 kJ.mol(-1). The importance of the specific binding of Br- to the surface of gold was confirmed by measurement of the initial adsorption of NaBr on the microparticles. The initial adsorption was found to be irreversible, with an enthalpy change of approximately -240 kJ.mol(-1). This process involved the formation of an AuBr-/H+ electric double layer at the gold/water interface, accompanied by a dramatic increase in the solution pH due to the release of a copious amount of OH- in the bulk liquid phase.  相似文献   

16.
The calormetically measured heats of adsorption of Cu, Ag, and Pb on MgO(100), previously measured in our group, are correlated with bulk properties of the metals and their sticking probabilities and film morphologies. The low-coverage heats of adsorption (when the metals are mainly in two-dimensional (2D) islands) are used to estimate metal-MgO(100) bond energies within a pairwise bond additivity model. These values correlate well with the observed initial sticking probabilities and saturation island densities of the metals. This supports a transient mobile precursor model for adsorption. The values also correlate with their bulk sublimation energies, which suggests that covalent metal-Mg bonding dominates the interaction at low coverage, probably due to very strong bonding at defects. The heats of adsorption integrated up to multilayer coverages provide the metal-MgO(100) adhesion energies and metal-MgO(100) bond energies for metals in 3D films. These values correlate with the sum of magnitudes of the metal's bulk sublimation energy plus the heat of formation of the bulk oxide of the metal per mole of metal atoms. This suggests that local chemical bonds, both metal-oxygen and covalent metal-Mg, dominate the interfacial bonding for 3D films.  相似文献   

17.
Low energy electron diffraction, Auger electron spectroscopy, X-ray photoelectron spectroscopy and line of sight mass spectrometry have been used to study the adsorption and desorption of dimethyldisulfide (DMDS) on Au(111). At 300 K adsorption is dissociative, forming a chemisorbed adlayer of methylthiolate with a 1/3 ML, (sq rt 3 x sq rt 3)R30 degrees, structure. At 100 K adsorption is molecular, with dissociation to form the 1/3 ML (sq rt 3 x sq rt 3)R30 degrees methylthiolate structure occurring at 138-160 K. A physisorbed DMDS layer, with a coverage of 1/6 ML of DMDS, forms on top of the (sq rt 3 x sq rt 3)R30 degrees chemisorbed MT surface for T < or = 180 K, with multilayers forming for T < or = 150 K. In temperature programmed desorption, multilayers of DMDS desorbed with zero order kinetics and an activation energy of 41 kJ mol(-1); the physisorbed layer desorbed with first order kinetics, exhibiting repulsive lateral interactions with an activation energy which varied from 63 kJ mol(-1) (theta = 0) to 51 kJ mol(-1) (theta = 1); the chemisorbed methylthiolate layer desorbed associatively as DMDS via the physisorbed layer, the activation energy for the reaction, 2 methylthiolate --> physisorbed DMDS, exhibiting repulsive lateral interactions with an activation energy which varied from 65 kJ mol(-1) (theta = 0) to 61 kJ mol(-1) (theta = 1). The physisorbed disulfide layer explains the pre-cursor state adsorption kinetics observed in sticking probability measurement, while its relatively facile formation provides a mechanism by which thiolate self-assembled monolayers can become mobile at room temperature.  相似文献   

18.
Titania supported vanadia catalyst exhibits the high activity for the selective oxidation of propylene to acetone. The rate for the formation of acetone at 463 K was determined to be 98 μmol g-1 min-1, corresponding to the TOF of 2×l0-3 s-1. Kinetic results show that the reaction exhibits the first order to propylene, zeroth order to oxygen and 0.5th order to water at 383-433 K. XRD, UV-visible spectra and oxygen chemisorption reveal that the highly dispersed polyvanadates are the main vanadium species on titania. FT-IR and microcalorimetric studies for NH3 adsorption indicate that the polyvanadates on the surface of V2O5/TiO2 catalyst produced the Brönsted acid sites with the initial heat of 104 kJ/mol. The initial heats for adsorption of propylene, water, isopropanol, acetone and oxygen on V2O5/TiO2 catalyst are 104,88,53,106,and 416 kJ/mol,respectively.  相似文献   

19.
The kinetics of the reduction of nickel cations in nickel oxide and nickel–chromium catalysts whose oxide precursors have different structures has been investigated by thermal analysis. The reduction of nickel oxide with a hydrogen-containing gas takes place at 250–330°C. The apparent activation energy of this reaction is about 88 kJ/mol. The introduction of up to 30 at % chromium cations into the nickel oxide structure shifts the reduction temperature of nickel in the oxide phase to 300–450°C and increases the apparent activation energy of the reduction of nickel cations to ~108 kJ/mol. The introduction of 67 at % chromium into nickel oxide results in the formation of an oxide precursor with a spinel structure. The apparent activation energy of the reduction of nickel cations in this spinel is about 163 kJ/mol. The results of this study can be used in optimizing the composition of Ni-containing hydrogenation catalysts and their activation and operation conditions.  相似文献   

20.
Potentials of embedded atom model (EAM) are calculated in analytical form for liquid iron and nickel. A series of models of these metals is created up to the temperature of 4000–4200 K. It is shown that these potentials enable us to obtain good agreement between the density of models and real metals; upon heating, however, the energy of the models is reduced relative to the real energies. It is established that the divergence of energies at ~4000 K is 32 kJ/mol for iron and 33 kJ/mol for nickel. It is shown that most of this divergence is determined by the contribution from the heat energy of electrons; after subtracting this contribution, a divergence of energies of 8.1 kJ/mol for iron and 14.3 kJ/mol for nickel remains. It is concluded that this divergence could be due partly to the insufficient adequacy of EAM potential in describing broad temperature ranges.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号