首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 29 毫秒
1.
The combined use of a pore-forming amphiphile, 1 (derived from lysine, cholic acid, and spermine), and thermally sensitive liposomes (made from 1,2-dipalmitoyl-sn-glycero-3-phosphocholine, DPPC) to create "thermally gated liposomes" (TGLs) has been demonstrated. Thus, at temperatures that lie above the gel to liquid-crystalline phase transition temperature of DPPC (i.e., 41 degrees C), 1 creates pores within DPPC membranes through which entrapped aqueous solutes, such as carboxyfluorescein, can readily pass. Below this temperature, efflux rates are greatly reduced. The potential of TGLs as devices for the targeted delivery of therapeutic agents is briefly discussed.  相似文献   

2.
采用LbL模板技术,将天然聚电解质壳聚糖CS和海藻酸钠ALG、磁性纳米颗粒Fe3O4或带负电荷或双亲性磷脂在单分散胶体表面进行组装,制备了一种具有热磁双重响应性的新型载药微囊.通过透射电镜、激光共聚焦显微镜、zeta-电位分析仪、紫外分光光度计等对微囊结构及载药、释药性能进行了表征.实验结果表明:微囊的载药量最高可达到22.40%,且具有磁导向作用.微囊外层组装具有热敏性质的磷脂层能有效地克服壳聚糖/海藻酸钠微囊通透性大而导致在较低温(正常生理环境)的输送过程中药物泄漏问题,而在较高温条件下又可使药物迅速释放,从而实现药物的可控释放.  相似文献   

3.
In a recent paper, we hypothesized that the continuous increase in membrane conductance observed for nano-BLMs is the result of an independent rupturing of single membranes or membrane patches covering the pores of the porous material. To prove this hypothesis, we prepared micro-BLMs on porous silicon substrates with a pore size of 7 mum. The upper surface of the silicon substrate was coated with a gold layer, followed by the chemisorption of 1,2-dipalmitoyl-sn-glycero-3-phosphothioethanol (DPPTE) and subsequent addition of a droplet of 1,2-diphytanoyl-sn-glycero-3-phosphocholine (DPhPC) dissolved in n-decane. The lipid membranes were fluorescently labeled and investigated by means of fluorescence microscopy and impedance spectroscopy. Impedance spectroscopy revealed the formation of pore-suspending bilayers with high membrane resistance. Increases in membrane capacitance and membrane conductance were observed. This increase in membrane conductance could be unambiguously related to the individual rupturing of membranes suspending the pores of the porous material as visualized by means of fluorescence microscopy. Moreover, by fluorescence recovery after photobleaching experiments, we investigated the lateral mobility of the lipids within the micro-BLMs leading to a mean effective diffusion coefficient of Deff = (14 +/- 1) microm2/s.  相似文献   

4.
The interactions of the bile salts sodium cholate (NaC) and sodium deoxycholate (NaDC) in 0.1 M NaCl (pH 7.4) with membranes composed of 1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine (DPPC), 1,2-dipalmitoyl-sn-glycero-3-phosphatidylglycerol (DPPG) and mixtures of DPPC and DPPG at molar ratios of 3:1 and 1:1 were studied by means of high-sensitivity isothermal titration calorimetry (ITC), dynamic light scattering (DLS), and differential scanning calorimetry (DSC). The partition coefficients and the transfer enthalpies for the incorporation of bile salt molecules into the phospholipid membranes were determined by ITC. The vesicle-to-micelle transition was investigated by ITC, DLS, and DSC. The phase boundaries for the saturation of the vesicles and their complete solubilization established by ITC were in general agreement with DLS data, but systematic differences could be seen due to the difference in detected physical quantities. Electrostatic repulsion effects between the negatively charged bile salt molecules and the negatively charged membrane surfaces are not limiting factors for the vesicle-to-micelle transition. The membrane packing constraints of the phospholipid molecules and the associated spontaneous curvature of the vesicles play the dominant role. DPPG vesicles are transformed by the bile salts into mixed micelles more easily or similarly compared to DPPC vesicles. The saturation of mixed DPPC/DPPG vesicles requires less bile salt, but to induce the solubilization of the liposomes, significantly higher amounts of bile salt are needed compared to the concentrations required for the solubilization of the pure phospholipid systems. The different solubilization behavior of DPPC/DPPG liposomes compared to the pure liposomes could be due to a specific "extraction" of DPPG into the mixed micelles in the coexistence region.  相似文献   

5.
The in-plane ionic conductivity of the approximately 1-nm-thick aqueous layer separating a 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) bilayer membrane and a glass support was investigated. The aqueous layer conductivity was measured by tip-dip deposition of a POPC bilayer onto the surface of a 20- to 75-microm-thick glass membrane containing a single conical-shaped nanopore and recording the current-voltage (i-V) behavior of the glass membrane nanopore/POPC bilayer structure. The steady-state current across the glass membrane passes through the nanopore (45-480 nm radius) and spreads radially outward within the aqueous layer between the glass support and bilayer. This aqueous layer corresponds to the dominant resistance of the glass membrane nanopore/POPC bilayer structure. Fluorescence recovery after photobleaching measurements using dye-labeled lipids verified that the POPC bilayer maintains a significant degree of fluidity on the glass membrane. The slopes of ohmic i-V curves yield an aqueous layer conductivity of (3 +/- 1) x 10(-3) Omega(-1) cm(-1) assuming a layer thickness of 1.0 nm. This conductivity is essentially independent of the concentration of KCl in the bulk solution (10-4 to 1 M) in contact with the membrane. The results indicate that the concentration and mobility of charge carriers in the aqueous layer between the glass support and bilayer are largely determined by the local structure of the glass/water/bilayer interface.  相似文献   

6.
Phospholipid-coated fused-silica capillaries with immobilized avidin were applied in the chiral separation of D,L-tryptophan, D,L-PTH-serine, and D,L-PTH-threonine at pH 7.4 by open-tubular CEC. Liposomes prepared from 1,2-dipalmitoyl-sn-glycero-3-phosphocholine, 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine-N-(Cap biotinyl), or 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine-N-(Biotinyl) with different amounts of phosphatidylserine were assessed as phospholipid coating materials. The stability of the coating and the success of the coating procedure were evaluated in terms of the repeatability of the enantiomer migration times and the resolution of enantiomers. The coating procedure itself significantly affected the migration times and resolution of the enantiomers. Reliable chiral separations with high separation efficiencies were achieved through careful choice of the coating method.  相似文献   

7.
Transient absorption spectroscopy was used to investigate the dynamics of the photochromic indolinobenzospiropyran reaction in toluene solution and in phosphatidylcholine bilayers (1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC), 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), and 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC)). After excitation with UV light, colorless (R/S)-2-(3',3'-dimethyl-6-nitro-3'H-spiro[chromene-2,2'-indol]-1'-yl)ethanol derivatives are converted to colored merocyanine products in high yield; Phi = 0.45 in DMPC liposomes. We find that the reaction occurs in the bilayer aliphatic region in the gel (P(beta)(')) and liquid (L(alpha)) phases. The Arrhenius activation energy for the isomerization in DMPC bilayers was approximately 3.5 times larger in the liquid phase (L(alpha), E(a) = 26.0 +/- 1.0 kJ mol(-1)) than that in the gel phase (P(beta)('), E(a) = 7.3 +/- 1.6 kJ mol(-1)). Analysis of the isomerization rate constant temperature dependence allows an estimation of the bilayer viscosity and free volume properties in the L(alpha) phase.  相似文献   

8.
The influence of La(3+) on the colloidal stability of liposomes made up by two zwitterionic phospholipids, 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and 1-palmitoyl-2-[16-fluoropalmitoyl-phosphatidylcholine (F-DPPC), in aqueous media has been investigated by dynamic light scattering and electrophoretic mobility. The critical aggregation concentration (c.a.c.) of La(3+) for F-DPPC and DPPC liposomes were experimentally obtained, and the results were compared with theoretical predictions using the Derjaguin-Landau-Verwey-Overbeek theory. In order to evaluate the influence of the state of the bilayer on the stability of liposomes, all experiments were performed at temperatures below and above the chain-melting phase-transition temperature of lipids (transition temperature of lipids). Changes in the size of both types of liposomes and high values of polydispersity in the presence of La(3+) showed that these ions induce aggregation of liposomes at 25 °C and at 60 °C. At 25 °C, when the bilayer of F-DPPC liposomes is interdigited, DPPC liposomes are more resistant to aggregation than the liposomes formed with F-DPPC. However, this difference disappears at 60 °C, when both bilayers have the same conformation. The experimental results also indicate that the c.a.c. is higher at 60 °C than at 25 °C for both types of liposomes. In fact, it has been observed by dynamic light scattering measurements that aggregation of liposomes at 25 °C can be prevented by increasing the solution temperature for La(3+) concentrations near to the c.a.c. Moreover, the behavior of these liposomes in the presence of the ion was studied at temperatures above and below the transition temperature of the phospholipids.  相似文献   

9.
The effect of the addition of 1, 2, 4, and 6 mol % cholesterol to 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) floating bilayers has been investigated by neutron reflectivity. All samples exhibited fully stable and reversible gel and fluid phases. Around the main lipid phase transition temperature, DPPC double bilayers exhibit large increases in the water layer separating the bilayers and the upper bilayer roughness. The inclusion of low amounts of cholesterol reduced the swelling of the water layer between the bilayers and the upper bilayer roughness and progressively widened the temperature range over which swelling occurs. Results from asymmetric bilayers are also reported. A higher amount of cholesterol in the lower bilayer induces a smaller swelling of the water layer between the bilayers than in the symmetric case. Finally, the effect of the inclusion of a leaflet of 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine (DPPE) was investigated. The presence of a leaflet with a higher gel-transition temperature (T(m)) modifies the phase behavior of the lower T(m) leaflet.  相似文献   

10.
The mixing properties of exchangeable phospholipids, derived from 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine and 1,2-distearoyl-sn-glycero-3-phosphoethanolamine, with an exchangeable form of cholesterol have been used to monitor the transition from the liquid-disordered to the liquid-ordered phase in cholesterol-containing bilayers, made from 1,2-dipalmitoyl-sn-glycero-3-phosphocholine and 1,2-distearoyl-sn-glycero-3-phosphocholine, respectively.  相似文献   

11.
The phase transition of individually addressable microstructured lipid bilayers was investigated by means of imaging ellipsometry. Microstructured bilayers were created on silicon substrates by micromolding in capillaries, and the thermotropic behavior of various saturated diacyl phosphatidylcholine (1,2-dipalmitoyl-sn-glycero-3-phosphocholine, 1,2-dipentadecoyl-sn-glycero-3-phosphocholine, and 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC)) bilayers as well as DMPC/cholesterol membranes was determined by measuring the area expansion and thickness of the bilayer as a function of temperature. We found an increase in the main phase transition temperature T(M) of 2-6 degrees C and a substantially reduced cooperativity compared to multilamellar vesicles. Measurements of lateral diffusion constants D employing fluorescence recovery after photobleaching revealed, however, only a marginal decrease in D compared to those found for vesicles and multibilayers. The known dependencies of T(M) both on the chain length of diacyl PC membranes and on the cholesterol content were reproduced on a solid support. Microstructured bilayers offer the unique advantage of integrating an internal standard of known thermotropic properties, which turned out to be important for reducing the measurement error and for ruling out the slightly changing impact of the surface on the phase transition behavior due to the surface pretreatment.  相似文献   

12.
We investigate the translocation of λ-DNA molecules through resistive-pulse polydimethylsiloxane (PDMS) nanopore sensors. Single molecules of λ-DNA were detected as a transient current increase due to the effect of DNA charge on ionic current through the pore. DNA translocation was found to deviate from a Poisson process when the interval between translocations was comparable to the duration of translocation events, suggesting that translocation was impeded during the presence of another translocating molecule in the nanopore. Characterization of translocation at different voltage biases revealed that a critical voltage was necessary to drive DNA molecules through the nanopore. Above this critical voltage, frequency of translocation events was directly proportional to DNA concentration and voltage bias, suggesting that transport of DNA from the solution to the nanopore was the rate limiting step. These observations are consistent with experimental results on transport of DNA through nanopores and nanoslits and the theory of hydrodynamically driven polymer flow in pores.  相似文献   

13.
High-performance thin-layer chromatographic (HPTLC) analysis of non UV-active phospholipids in biological matrixes is a common method for separation, detection, and quantitation. Liposomes containing new alkylphosphocholines and analogues with enhanced cytostatic activity had been prepared. The liposomal formulations were designed to enable the intravenous application of the alkylphosphocholines and analogues and to reduce dose-limiting toxicities observed after oral administration. For quality control the liposomes were analyzed by HPTLC for content of 1,2-dipalmitoyl-sn-glycero-3-phosphoglycerol (DPPG), cholesterol, alkylphosphocholines, and analogues and their related compounds (main degradation products). Due to the differences in lipophily of the compounds, different mobile phases were necessary to achieve separation. Automated Multiple Development was used to reduce the number of plates and to improve the selectivity and the capacity of the chromatographic system to separate the described alkylphosphocholines and analogues from DPPG and 1,2-dipalmitoyl-sn-glycero-3-phosphocholine in one chromatographic system.  相似文献   

14.
The authors have addressed theoretically the hydrodynamic effect on the translocation of DNA through nanopores. They consider the cases of nanopore surface charge being opposite to the charge of the translocating polymer. The authors show that, because of the high electric field across the nanopore in DNA translocation experiments, electro-osmotic flow is able to create an absorbing region comparable to the size of the polymer around the nanopore. Within this capturing region, the velocity gradient of the fluid flow is high enough for the polymer to undergo coil-stretch transition. The stretched conformation reduces the entropic barrier of translocation. The diffusion limited translocation rate is found to be proportional to the applied voltage. In the authors' theory, many experimental variables (electric field, surface potential, pore radius, dielectric constant, temperature, and salt concentration) appear through a single universal parameter. They have made quantitative predictions on the size of the adsorption region near the pore for the polymer and on the rate of translocation.  相似文献   

15.
The initial mechanism by which antimicrobial peptides target microbes occurs via electrostatic interactions; however, the mechanism is not well understood. We investigate the interaction of the antimicrobial peptide bactenecin with a 50:50 w:w% 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and 1,2-dimyristoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (DMPG) phospholipid mixture at the air-water interface with different NaCl concentrations (0.01, 0.05, 0.1, 0.5 M) in the subphase. A larger shift of DPPC:DMPG isotherms was obtained for 0.1 M salt concentration at lower and higher pressures, demonstrating the influence of the negative charge of DMPG molecules and the screening of the electrostatic interaction by the salt concentration. Raman spectroscopy of monolayers demonstrated the presence of cysteine-cysteine bridges in bactenecin loops. The peptide adsorption in DPPC:DMPG monolayers observed by AFM images suggests a self-assembled aggregation process, starting with filament-like networks. Domains similar to carpets were formed and pore structures were obtained after a critical peptide concentration, according to the carpet model.  相似文献   

16.
The present work examines the relationship between the antimicrobial activity of novel arginine-based cationic surfactants and the physicochemical process involved in the perturbation of the cell membrane. To this end, the interaction of these surfactants with two biomembrane models, namely, 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) multilamellar lipid vesicles (MLVs) and monolayers of DPPC, 1,2-dipalmitoyl-sn-glycero-3-[phospho-rac-(1-glycerol)] sodium salt (DPPG), and Escherichia coli total lipid extract, was investigated. For the sake of comparison, this study included two commercial antimicrobial agents, hexadecyltrimethylammonium bromide and chlorhexidine dihydrochloride. Changes in the thermotropic phase transition parameters of DPPC MLVs in the presence of the compounds were studied by differential scanning calorimetry analysis. The results show that variations in both the transition temperature (Tm) and the transition width at half-height of the heat absorption peak (deltaT1/2) were consistent with the antimicrobial activity of the compounds. Penetration kinetics and compression isotherm studies performed with DPPC, DPPG, and E. coli total lipid extract monolayers indicated that both steric hindrance effects and electrostatic forces explained the antimicrobial agent-lipid interaction. Overall, in DPPC monolayers single-chain surfactants had the highest penetration capacity, whereas gemini surfactants were the most active in DPPG systems. The compression isotherms showed an expansion of the monolayers compared with that of pure lipids, indicating an insertion of the compounds into the lipid molecules. Owing to their cationic character, they are incorporated better into the negatively charged DPPG than into zwitterionic DPPC lipid monolayers.  相似文献   

17.
An antioxidative liposome catalysis that mimics both superoxide dismutase (SOD) and peroxidase (POD) activities has been developed by using the liposomes modified with lipophilic Mn-(5,10,15,20-tetrakis[1-hexadecylpyridium-4-yl]-21H,23H-porphyrin) (Mn-HPyP). The SOD- and POD-like activities of the Mn-HPyP-modified liposome were first investigated by varying the type of phospholipid, such as 1,2-distearyl-sn-glycero-3-phosphocholine (DSPC), 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC), 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), and 1,2-dilauroyl-sn-glycero-3-phosphocholine (DLPC). Higher SOD-like activity was obtained in the case of DLPC and DMPC liposomes, in which the ligands were well-dispersed on the membrane in the liquid crystalline phase. The POD-like activity was maximal in the case of DMPC liposome, in which the Mn-HPyP complex was appropriately clustered on the membrane in the gel phase. On the basis of the above results, the co-induction of the SOD and POD activities to eliminate the superoxide and also hydrogen peroxide as a one-pot reaction was finally performed by using the Mn-HPyP-modified DMPC liposome, resulting in an increase in the efficiency of the elimination of both superoxide and hydrogen peroxide.  相似文献   

18.
孙润广  郝长春  常怡光  张静  牛春玲 《化学学报》2009,67(15):1808-1814
鞘氨醇(sphingosine)是生物体内合成鞘脂的母体化合物, 是生物膜中的重要组分之一. 通过分析表面压力和平均分子面积(π-A)等温线数据分别研究了鞘氨醇与二棕榈酰基磷脂酰胆碱(DPPC)和二棕榈酰基磷脂酰乙醇胺(DPPE)二元组分单层膜的热力学特性, 并在恒定膜压下制备不同摩尔比例的混合脂膜用原子力显微镜进行观测. 实验结果表明: (1)鞘氨醇与DPPC组成的系统中, XD-Sph=0.2, 0.4, 0.6时, 过量分子面积与过量吉布斯自由能在所研究的表面压力下表现为负值, 而当XD-Sph=0.8时, 表现为正值; (2)鞘氨醇与DPPE组成的系统中, 当表面压力 π<25 mN•m-1时, 过量分子面积与过量吉布斯自由能在所研究的组分比例下表现为负值, 当π≥25 mN•m-1时为正值. 混合单层膜的分子面积与表面吉布斯自由能决定了分子间的相互作用, 当为负值时分子间相互作用表现为吸引力, 出现凝聚现象; 为正值时分子间相互作用表现为排斥力, 促使单层膜出现相分离现象. 过量吉布斯自由能值越小, 单层膜的热稳定性越高. 弹性系数曲线分析和AFM图片观测进一步验证了理论分析的结果.  相似文献   

19.
用同步辐射小角和宽角X光衍射实验技术研究了由二棕榈酰磷脂酰胆碱(DPPC)和豆固醇所形成的脂质体的液态有序相的结构性质. 结果表明液态有序相的小角X光衍射d值(d-spacing)随着固醇温度和浓度的变化仅有微小的改变. 与凝胶相及液晶相的宽角X光衍射d值相比, 液态有序相的宽角X光衍射d值有更宽的变化范围, 在30到52 °C的温度范围内, 液态有序相的宽角X光衍射d值从0.422 nm变化到0.460 nm. 电子云密度计算表明液态有序相的脂双层厚度和水层厚度都要大于与之平衡共存的液晶相的脂双层厚度和水层厚度. 电子云密度计算结果还表明液态有序相的脂双层厚度随温度升高而降低. 本研究结果对于从定量的角度认识 生物膜的相态及深入认识生物膜中的有序结构具有重要意义.  相似文献   

20.
Interactions of phenantrene, anthracene, pyrene, chrysene, and benzo[a]pyrene (polyaromatic hydrocarbons) with model phospholipid membranes were probed using the Langmuir technique. The lipid monolayers were prepared using 1,2-dipalmitoyl-sn-glycero-3-phosphocholine, 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine, 1,2-dipalmitoyl-sn-glycero-3-phosphoglycerol, 1,2-dipalmitoyl-sn-glycero-3-phosphoserine, 1,2-myristoyl-sn-glycero-3-phosphoethanolamine, 1,2-dilauroyl-sn-glycero-3-phosphocholine, and cholesterol. Surface pressure and electrical surface potential were measured on mixed phospholipid/PAH monolayers spread on a pure water subphase. The morphology of the mixed monolayers was followed with Brewster angle microscopy. Polarization-modulation infrared reflection-absorption spectroscopy spectra obtained on DPPE/benzo[a]pyrene showed that the latter interacts with the carbonyl groups of the phospholipid. On the other hand, the activity of phospholipase A2 toward DLPC used as a probe to locate benzo[a]pyrene in the monolayers indicates that the polyaromatic hydrocarbons are not accessible to the enzyme. The results obtained show that all PAHs studied affect the properties of the pure lipid, albeit in different ways. The most notable effects, namely, film fluidization and morphology changes, were observed with benzo[a]pyrene. In contrast, the complexity of mixed lipid monolayers makes the effect of PAHs difficult to detect. It can be assumed that the differences observed between PAHs in monolayers correlate with their toxicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号