首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The colloidal behavior of natural organic matter (NOM) and synthetic poly(acrylic acid) (PAA)-coated ferrimagnetic (γFe(2)O(3)) nanoparticles (NPs) was investigated. Humic acid (HA), an important component of NOM, was extracted from a peat soil. Two different molecular weight PAAs were also used for coating. The colloidal stability of the coated magnetic NPs was evaluated as a resultant of the attractive magnetic dipolar and van der Waals forces and the repulsive electrostatic and steric-electrosteric interactions. The conformational alterations of the polyelectrolytes adsorbed on magnetic γFe(2)O(3) NPs and their role in colloidal stability were determined. Pure γFe(2)O(3) NPs were extremely unstable because of aggregation in aqueous solution, but a significant stability enhancement was observed after coating with polyelectrolytes. The steric stabilization factor induced by the polyelectrolyte coating strongly dictated the colloidal stability. The pH-induced conformational change of the adsorbed, weakly charged polyelectrolytes had a significant effect on the colloidal stability. Atomic force microscopy (AFM) revealed the stretched conformation of the HA molecular chains adsorbed on the γFe(2)O(3) NP surface at pH 9, which enhanced the colloidal stability through long-range electrosteric stabilization. The depletion of the polyelectrolyte during the dilution of the NP suspension decreased the colloidal stability under acidic solution conditions. The conformation of the polyelectrolytes adsorbed on the NP surface was altered as a function of the substrate surface charge as viewed from AFM imaging. The polyelectrolyte coating also led to a reduction in magnetic moments and decreased the coercivity of the coated γFe(2)O(3) NPs. Thus, the enhanced stabilization of the coated maghematite NPs may facilitate their delivery in the groundwater for the effective removal of contaminants.  相似文献   

2.
Semiconductor colloidal quantum dots (QDs) are promising fluorescent probes for biology. Initially synthesized in organic solvents, they can be dispersed in aqueous solution by noncovalent coating with amphiphilic macromolecules, which renders the particles hydrophilic and modifies their interactions with other biological compounds. Here, after coating QDs with an alkyl-modified polyacrilic acid, we investigated their colloidal properties in aqueous buffers by electrophoresis, electron microscopy, light scattering, and rate zonal centrifugation. Despite polymer dispersity and variation of the size of the inorganic nanoparticles, the polymer-dot complexes appeared relatively well-defined in terms of hydrodynamic radius and surface charge. Our data show that these complexes contain isolated QD surrounded by a polymer layer with thickness 8-10 nm. We then analyzed their interaction with giant unilamellar vesicles, either neutral or cationic, by optical microscopy. At neutral pH, we found the absence of binding of the coated particles to lipid membrane, irrespective of their lipid composition. An abrupt surface aggregation of the nanoparticles on the lipid membrane was observed in a narrow pH range (6.0-6.2), indicative of critical binding triggered by polymer properties. The overall features of QDs coated with amphiphilic polymers open the route to using these nanoparticles in vivo as optically stable probes with switchable properties.  相似文献   

3.
We report on a single-step coating process and the resulting colloidal stability of silica-coated spindle-type hematite nanoparticles (NPs) decorated with a layer of poly(acrylic acid) (PAA) polyelectrolyte chains that are partially incorporated into the silica shell. The stability of PAA coated NPs as a function of pH and salt concentration in water was compared to bare hematite particles and simple silica-coated hematite NPs, studying their electrophoretic mobility and the hydrodynamic radius by dynamic light scattering. Particles coated with this method were found to be more stable upon the addition of salt at pH 7, and their aggregation at the pH of the isoelectric point is reversible. The hybrid coating appears to increase the colloidal stability in aqueous media due to the combination of the decrease of the isoelectric point and the electrosteric stabilization. This coating method is not limited to hematite particles but can easily be adapted to any silica-coatable particle.  相似文献   

4.
Template synthesis of various morphological gold colloidal nanoparticles using a thermoresponsive and pH-responsive coordination triblock copolymer of poly(ethylene glycol)-b-poly(4-vinylpyridine)-b-poly(N-isopropylacrylamide) is studied. The template morphology of the thermoresponsive and pH-responsive coordination triblock copolymer, which can be tuned by simply changing the pH or temperature of the triblock copolymer aqueous solution, ranges from single chains to core-corona micelles and further to micellar clusters. Various morphological gold colloidal nanoparticles such as discrete gold nanoparticles, gold@polymer core-shell nanoparticles, and gold nanoparticle clusters are synthesized on the corresponding template of the triblock copolymer by first coordination with gold ions and then reduction by NaBH4. All three resultant gold colloidal nanoparticles are stable in aqueous solution, and their sizes are 2, 10, and 7 nm, respectively. The gold@polymer core-shell nanoparticles are thermoresponsive. The gold nanoparticle cluster has a novel structure, and each one holds about 40 single gold nanoparticles.  相似文献   

5.
6.
We have measured the force between a weakly charged micron-sized colloidal particle and flat substrate in the presence of highly charged nanoparticles of the same sign under solution conditions such that the nanoparticles physically adsorb to the colloidal particle and substrate. The objective was to investigate the net effect on the force profile between the microparticle and flat substrate arising from both nanoparticle adsorption and nanoparticles in solution. The experiments used colloidal probe atomic force microscopy (CP-AFM) to measure the force profile between a relatively large (5 μm) colloidal probe glass particle and a planar glass substrate in aqueous solutions at varying concentrations of spherical nanoparticles. At very low nanoparticle concentrations, the primary effect was an increase in the electrostatic repulsion between the surfaces due to adsorption of the more highly charged nanoparticles. As the nanoparticle concentration is increased, a depletion attraction formed, followed by longer-range structural forces at the highest nanoparticle concentrations studied. These results suggest that, depending on their concentration, such nanoparticles can either stabilize a dispersion of weakly-charged colloidal particles or induce flocculation. This behavior is qualitatively different from that in nonadsorbing systems, where the initial effect is the development of an attractive depletion force.  相似文献   

7.
This paper describes a rapid, simple and one-step method for preparing silica coated gold (Au@SiO2) nanoparticles with fine tunable silica shell thickness and surface functionalization of the prepared particles with different groups. Monodispersed Au nanoparticles with a mean particle size of 16 nm were prepared by citrate reduction method. Silica coating was carried out by mixing the as prepared Au solution, tetraethoxysilane (TEOS) and ammonia followed by microwave (MW) irradiation. Although there are several ways of coating Au nanoparticles with silica in the literature, each of these needs pre-coating step as well as long reaction duration. The present method is especially useful for giving the opportunity to cover the colloidal Au particles with uniform silica shell within very short time and forgoes the use of a silane coupling agent or pre-coating step before silica coating. Au@SiO2 nanoparticles with wide range of silica shell thickness (5-105 nm) were prepared within 5 min of MW irradiation by changing the concentration of TEOS only. The size uniformity and monodispersity were found to be better compared to the particles prepared by conventional methods, which were confirmed by dynamic light scattering and transmission electron microscopic techniques. The prepared Au@SiO2 nanoparticles were further functionalized with amino, carboxylate, alkyl groups to facilitate the rapid translation of the nanoparticles to a wide range of end applications. The functional groups were identified by XPS, and zeta potential measurements.  相似文献   

8.
We report the synthesis, characterization and relaxometric study of ferrofluids based on iron oxide, with potential for use as magnetic resonance imaging (MRI) contrast agents (CAs). The effect of different cost-effective, water-based surface modification approaches which can be easily scaled-up for the large scale synthesis of the ferrofluids has been investigated. Surface modification was achieved by silanization, and/or coating with non-toxic commercial dispersants (a lauric polysorbate and a block copolymer with pigment affinic groups, namely Tween 20 and Disperbyk 190) which were added after or during iron oxide nanoparticle synthesis. It was observed that all the materials synthesized functioned as negative contrast agents at physiological temperature and at frequencies covered by clinical imagers. The relaxometric properties of the magnetic nanoparticles were significantly improved after surface coating with stabilizers compared to the original iron oxide nanoparticles, with particular reference to the silica-coated magnetic nanoparticles. The results indicate that the optimization of the preparation of colloidal magnetic ferrofluids by surface modification is effective in the design of novel contrast agents for MRI by enabling better or more effective interaction between the coated iron oxide nanoparticles and protons present in their aqueous environment.  相似文献   

9.
聚丙烯酸酯无皂水溶胶阻尼涂料动态力学性能的研究   总被引:6,自引:0,他引:6  
用分步溶液聚合法合成了两种丙烯酸酯共聚物的共混物[P(BA-HEMA-AA)/P(MMA-HEMA-AA)A],制成无皂水溶胶,加入交联剂配成涂料。两种共聚物既可相互贯穿缠结,又可通过交联剂交联,使涂膜同时具有物理交联和化学交联。用动态力学分析法(DMA)、扭辫分析法(TBA)考察了涂膜的动态力学性能,表明涂膜具有IPN结构,并有良好的阻尼性能。  相似文献   

10.
This paper reports the fabrication of a photonic crystal made of hydrogel-coated colloidal nanoparticles, which can act as an optical sensor in visible and near-infrared region triggered by temperature. The synthetic scheme involves silanization of silica nanoparticles followed by radical-initiated precipitation polymerization forming a thermoresponsive polymer coating. These core–shell nanostructures self-assemble to produce colloidal crystalline array (CCA). The main advantages of self-assembly approach are experimental simplicity, possibility of 3D assembly and inexpensive mass production. Photon correlation spectroscopy results revealed a very interesting new phenomenon of showing a distinct break near the lower critical solution temperature along with a set of two-step curves, in the plot of mean hydrodynamic radius vs. temperature, which can be attributed to the breakage of two different types of hydrogen-bonding. The lattice parameters of these CCAs and hence their sensor properties can be effectively tuned by varying the core-size and temperature, which in turn changes the composite particle size as well as shape and hence volume fraction. In Reflectance measurements, the position of the stop-band was found to be directly proportional to the core-size, whereas the appearance of a second diffraction peak was correlated to the non-spherical nature of the nanocomposites supported by atomic force microscope images and possibly due to the existence of a second phase. The occurrence of such high-order multiple Bragg’s diffraction peak certainly opens a new door towards nanophotonic sensor devices.  相似文献   

11.
Antimicrobial ultrafiltration membranes were prepared by coating silver nanoparticles on the surface of polyethersulfone (PES) membranes which were fabricated via phase inversion induced by the immersion precipitation technique, and their morphology and performance were compared with the antimicrobial PES membranes synthesized by adding the silver nanoparticles into the casting solution during the phase inversion process. For this purpose, stable and uniform colloidal solutions of the silver nanoparticles were prepared by chemical reduction of silver salt using fructose and dimethylformamide as a reducing agent. The silver nanoparticles were characterized by ultraviolet–visible spectroscopy, X‐ray powder diffraction and dynamic light scattering analysis. The morphology and surface properties of the prepared membranes were examined by field emission scanning electron microscopy and atomic force microscopy analysis. Moreover, the separation properties, antimicrobial efficiency and amount of silver release from the PES nanocomposite membranes during the cross flow ultrafiltration were determined. The results indicated that the silver content of the coated PES membranes was greater than the membranes fabricated by the solution blending method. Also, the permeation flux of the silver‐coated membranes was similar to the neat PES membranes, while the membranes prepared by the second approach had less flux. The membranes synthesized by both coating and blending methods showed high antimicrobial and bactericidal activity against gram‐negative bacteria such as Escherichia coli and gram‐positive bacteria such as Staphylococcus aureus. Finally, the prepared antimicrobial membranes were successfully used for the ultrafiltration of raw milk to reduce the microbial load during the concentration process. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
The ionic strength of a solution decreases during the precipitation of an insoluble salt, which can cause an initially unstable colloidal system to stabilize during its formation. We show this effect in the precipitation and aging of colloidal iron(III) pyrophosphate, where we observe two distinct stages in the aggregation process. The first stage is the formation of nanoparticles that immediately aggregate into clusters with sizes on the order of 200 nm. In the second stage these clusters slowly grow in size but remain in dispersion for days, even months for dialyzed systems. Eventually these clusters become macroscopically large and sediment out of dispersion. Noting the clear instability of the nanoparticles, it is interesting to find two stages in their aggregation even without the use of additives such as surface active molecules. This is explained by accounting for the rapid decrease of ionic strength during precipitation, rendering the nanoparticles relatively stable when precipitation is complete. Calculating the interaction potentials for this scenario we find good agreement with the experimental observations. These results indicate that coupling of ionic strength to aggregation state can be significant and should be taken into account when considering colloidal stability of insoluble salts.  相似文献   

13.
Rare-earth-doped gadolinium fluoride nanocrystals were synthesized by a single step synthesis employing ethylene glycol as solvent. Based on X-ray diffraction studies, stabilization of hexagonal modification of GdF(3) has been inferred. The microscopic studies show formation of uniformly distributed nanocrystals (~15 nm). The nanoparticles are readily dispersible in water and show bright luminescence in colloidal solution. The luminescence properties have been investigated as a function of activator concentrations, and enhanced optical properties have been attributed to efficient energy transfer from the Gd(3+) to the activator RE(3+) ions, which has further been confirmed by steady-state and time-resolved optical studies. It has been demonstrated that on doping appropriate amount of activators in host GdF(3), a novel white-light-emitting phosphor is obtained with CIE co-ordinates and correlated color temperature (CCT) very close to broad daylight. This can have promising applications as phosphor for white-light ultraviolet-light-emitting diodes (UV-LEDs). Our experiments showed efficient labeling of human breast carcinoma cells (MCF-7) by Tb(3+)-doped GdF(3) nanoparticles. The fluorescence intensity was found to be dependent on the surface modifying/coating agent, and the results were validated using confocal microscopy in terms of localization of these functionalized nanoparticles.  相似文献   

14.
In saline solutions with NaCl concentrations less than that typical of blood plasma and bodily fluids, gold nanoparticles (GNPs) aggregate and precipitate because of GNP cation complexation with the Cl? anions in the solution. It is difficult to retain stable colloidal GNPs within any saline solution for a relatively long time without aggregation and precipitation. In this study, we developed a method to synthesize stable GNPs in harsh anion-containing environments. GNPs were formed by laser ablation in a saline solution, and their stabilization was achieved by adding bovine serum albumin (BSA) to the NaCl solution; this has been shown to be a quick, efficient approach to producing stable colloidal GNPs. GNP nanoclusters in saline solutions with and without BSA were observed via high-resolution transmission electron microscopy and selected area electron diffraction. The results reveal that our methodology yields colloidal GNPs with long-term stability in a BSA-containing saline solution.  相似文献   

15.
The identification and discrimination of microorganisms is important not only for clinical reasons but also for pharmaceutical clean room production and food-processing technology. Vibrational spectroscopy such as IR, Raman, and surface-enhanced Raman scattering (SERS) can provide a rapid ‘fingerprint’ on the chemical structure of molecules and is used to obtain a ‘fingerprint’ from microorganisms as well. Because of the requirement that a single bacterium cell and noble metal nanoparticles must be in close contact and the lack of a significant physical support to hold nanoparticles around the single bacterium cell, the acquisition of SERS spectra for a single bacterium using colloidal nanoparticles could be a challenging task. The feasibility of SERS for identification down to a single bacterium is investigated. A Gram-negative bacterium, Escherichia coli, is chosen as a model for the investigation. Because the adsorption of silver nanoparticles onto the bacterial cell is an exclusive way for locating nanoparticles close to the bacterium cell, the absorption characteristics of silver nanoparticles with different surface charges are investigated. It is demonstrated that the citrate-reduced colloidal silver solution generates more reproducible SERS spectra. It is found that E. coli cells aggregate upon mixing with silver colloidal solution, and this may provide an additional benefit in locating the bacterial cell under a light microscope. It is also found that a laser wavelength in the UV region could be a better choice for the study due to the shallow penetration depth. It is finally shown that it is possible to obtain SERS spectra from a single cell down to a few bacterial cells, depending on the aggregation properties of bacterial cells for identification and discrimination.  相似文献   

16.
张宗绵  刘睿  徐敦明  刘景富 《化学学报》2012,70(16):1686-1689
以具有核壳结构的Au@SiO2纳米颗粒为基底,建立了一种以表面增强拉曼(SERS)原位、快速检测食品中非法添加剂酸性橙Ⅱ的新方法.研究了活性硅加入量对所形成的Au@SiO2纳米颗粒的SERS活性的影响,制备了具有最佳SERS活性的Au@SiO2,并以此为SERS基底建立了酸性橙Ⅱ的分析方法,可实现0.17 mg/L酸性橙Ⅱ的SERS检测.将合成的Au@SiO2滴加到瓜子表面后,可以实现对瓜子表面酸性橙Ⅱ浓度为0.01 mg/g时的SERS检测,能够满足食品中酸性橙Ⅱ的测定要求,有望用于瓜子及其它可能被非法添加该物质的食品的现场、快速检测.  相似文献   

17.
纳米金掺杂中空微胶囊的制备与表征   总被引:1,自引:1,他引:0  
将表面含有双键的二氧化硅微粒分散在纳米金和聚乙烯吡咯烷酮溶液中.在此溶液中以聚乙烯吡咯烷酮为模板聚合物进行丙烯酸的模板聚合,得到二氧化硅为核、聚丙烯酸/聚乙烯吡咯烷酮/纳米金为壳层的核壳结构微粒.用氢氟酸将二氧化硅微粒去除后,得到了纳米金粒子掺杂的微胶囊.分别用扫描电子显微镜和激光共聚焦显微镜表征了微胶囊在干态和湿态下的形貌.通过电子衍射和透射电子显微镜确证了纳米金粒子在微囊壁上的存在和分布.  相似文献   

18.
Iron oxide nanoparticles are used in vivo as contrast agents in magnetic resonance imaging. Their widely used polymer coatings are directly involved in their biocompatibility and avoid magnetic aggregation. As these polymer brushes also limit their tissular diffusion due to important hydrodynamic sizes, this work looks to obtain particles coated with thin layers of organic biocompatible molecules. Coating molecules were chosen depending on their fixation site on iron cores; carboxylates, sulfonates, phosphates, and phosphonates, and, among them, analogs of the phosphorylcholine. Two coating procedures (dialysis and exchange resins purification) were evaluated for hydrodynamic size, total iron concentration, electrophoretic mobility, and colloidal stability. Furthermore, a complementary test on stainless steel plates evaluated the contamination by competition of phosphonates as a rough estimation of the biocompatibility of the particles. Coating with bisphosphonates, the more interesting fixation moiety, leads to small (less than 15 nm) and stable objects in a wide range of pH including the neutrality. From stability data, the coating density was evaluated at around 1.6 molecules per nm(2). Including a quaternary ammonium salt to the coating molecule lowers their electrophoretic mobility. Moreover, this type of coating protects steel plates against contamination without significant desorption. All these properties allow further developments of these nanoparticles for biomedical applications. Copyright 2001 Academic Press.  相似文献   

19.
Photoconductive oxotitanium phthalocyanine (TiOPc) nanoparticles with an average diameter of 3.6 nm were successfully prepared. These nanoparticles could be well dispersed in organic solvents such as 1,2-dichloroethane to form a stable organic sol of solvent-stabilized TiOPc nanoparticles. An obvious size effect of TiOPc semiconductor was revealed by the UV-vis absorption spectroscopy measurements. Single-layered photoreceptors were prepared by coating colloidal solutions containing the C(2)H(4)Cl(2)-stabilized TiOPc nanoparticles and a polycarbonate (PC) resin onto aluminum plates. Optimum xerographic properties of the present photoreceptors were obtained on a photoreceptor containing 20 wt% of the TiOPc nanoparticles, which exhibited a photoconductive sensitivity (E(1/2)) of 0.54 microJ/cm(2) and could be positively charged to 596 V.  相似文献   

20.
Synthetic phytochelatin-related peptides are used as an organic coat on the surface of colloidal CdSe/ZnS semiconductor nanocrystals synthesized from hydrophobic coordinating trioctyl phosphine oxide (TOPO) solvents. The peptides are designed to bind to the nanocrystals via a C-terminal adhesive domain. This adhesive domain, composed of multiple repeats of cysteines pairs flanked by hydrophobic 3-cyclohexylalanines, is followed by a flexible hydrophilic linker domain to which various bio-affinity tags can be attached. This surface coating chemistry results in small, buffer soluble, monodisperse peptide-coated nanoparticles with high colloidal stability and ensemble photophysical properties similar to those of TOPO-coated nanocrystals. Various peptide coatings are used to modulate the nanocrystal surface properties and to bioactivate the nanoparticles. CdSe/ZnS nanocrystals coated with biotinylated peptides efficiently bind to streptavidin and are specifically targeted to GPI-anchored avidin-CD14 chimeric proteins expressed on the membranes of live HeLa cells. This peptide coating surface chemistry provides a novel approach for the production of biocompatible photoluminescent nanocrystal probes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号