首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
[{mu-(Pyridazine-N(1):N(2))}Fe(2)(mu-CO)(CO)(6)](1) reacts with aryllithium reagents, ArLi (Ar = C(6)H(5), m-CH(3)C(6)H(4)) followed by treatment with Me(3)SiCl to give the novel pyridazine-coordinated diiron bridging siloxycarbene complexes [(C(4)H(4)N(2))Fe(2){mu-C(OSiMe(3))Ar}(CO)(6)](2, Ar = C(6)H(5); 3, Ar =m-CH(3)C(6)H(4)). Complex 2 reacts with HBF(4).Et(2)O at low temperature to yield a cationic bridging carbyne complex [(C(4)H(4)N(2))Fe(2)(mu-CC(6)H(5))(CO)(6)]BF(4)(4). Cationic 4 reacts with NaBH(4) in THF at low temperature to afford the diiron bridging arylcarbene complex [(C(4)H(4)N(2))Fe(2){mu-C(H)C(6)H(5)}(CO)(6)](5). Unexpectedly, the reaction of 4 with NaSCH(3) under similar conditions gave the bridging arylcarbene complex 5 and a carbonyl-coordinated diiron bridging carbene complex [Fe(2){mu-C(SCH(3))C(6)H(5)}(CO)(7)](6), while the reaction of NaSC(6)H(4)CH(3)-p with 4 affords the expected bridging arylthiocarbene complex [(C(4)H(4)N(2))Fe(2){mu-C(SC(6)H(4)CH(3)-p)C(6)H(5)}(CO)(6)](7), which can be converted into a novel diiron bridging carbyne complex with a thiolato-bridged ligand, [Fe(2)(mu-CC(6)H(5))(mu-SC(6)H(4)CH(3)-p)(CO)(6)](8). Cationic can also react with the carbonylmetal anionic compound Na(2)[Fe(CO)(4)] to yield complex 5, while the reactions of 4 with carbonylmetal anionic compounds Na[M(CO)(5)(CN)](M = Cr, Mo, W) produce the diiron bridging aryl(pentacarbonylcyanometal)carbene complexes [(C(4)H(4)N(2))Fe(2)-{mu-C(C(6)H(5))NCM(CO)(5)}(CO)(6)](9, M = Cr; 10, M = Mo; 11, M = W). The structures of complexes 2, 5, 6, 8, and 9 have been established by X-ray diffraction studies.  相似文献   

2.
The crystal structure of Ni(Ⅱ) complex with 3-hydroxyl-1, 5-diazacycloheptane-N, N'-diacetate was determined by X-ray diffraction method. Crystal data for Ni2 (C9H14N2O5)2·2H2O: monoclinic, space group P21/n, a = 1.1717(5), b = 0.9794(3), c = 1.2971(2) nm, β= 96.62(3), V= 1.4786(7) nm3, Dc = 1.377 g/cm3, Z = 2,μ=13.321 cm-1 (Mo-Kα), F(000)=640. The final R and Rw are 0.075 and 0.089 respectively. The Ni(Ⅱ) ion forms 2:2 complex with ligand. Two ligands are bridged by two Ni(Ⅱ) atoms which are bridged by two O atoms. Every Ni(Ⅱ) is coordinated by two N atoms and four 0 atoms. The coordination polyhedron of the Ni(Ⅱ) ion is a distorted octahedron.  相似文献   

3.
Synthesis of naphthalyne-Co2(CO)6 complexes, the first example of the aryne-Co2(CO)6 complex, was achieved via cyclization of acyclic alkyne-Co2(CO)6 complex precursors containing an allylsilane and an aldehyde moiety followed by dehydration. Unique reactivities of the complexes toward oxygen to give carboxylic acid derivatives and toward alkynes to give cyclopentadienone derivatives were also disclosed.  相似文献   

4.
Four β-ketoimine ligands (two series) were prepared through traditional condensation reactions of β-diketones with 2,6-substituted anilines. Reaction took place only at the cyclohexanone carbonyl rather than at the acetyl or benzoyl carbonyl, even if more than two equivalents of the amines were added. Consequently, four new moisture- and air-stable bis(β-ketoamino)nickel(II) complexes, Ni[2–CH3C(O)C6H8(=NAr)]2 (Ar?=?2, 6-iPr2C6H3, (1); Ar?=?2, 6-Me2C6H3, (2) and Ni[2–PhC(O)C6H8(=NAr)]2 (Ar?=?2, 6-iPr2C6H3, (3); Ar?=?2, 6-Me2C6H3, (4) were obtained and characterized. The solid-state structures of complex 1, 2 and 3 have been determined by single-crystal X-ray diffraction. Additionally, these complexes can be applied as highly active catalyst precursors for vinyl polymerization of norbornene (NBE) after activation with methylaluminoxane (MAO).  相似文献   

5.
Novel anionic dinuclear mixed-ligand peroxo complexes of the type [(UO2)2(O2)3L(H2O)2]3− (L = Histidinate, aspartate, salicylate, Imidazolate and glutamate) have been synthesized from the interaction of uranyl ion (UO22+) with peroxide (O22−) in the presence of the respective coligand (L) at pH 9–10. The sparingly soluble complexes were characterized by elemental analyses, FT-IR, laser Raman (LR) and UV-vis spectroscopy and solution electrical conductance measurements. Based on these studies, a double bridged dinuclear structure involving one peroxo and the mixed ligand L (via-COO) has been tentatively proposed. Infra-red coupled with LR spectra evidenced structurally different metal bound peroxides (ν2 and σ:σ). An aqueous solution of the salicylate and aspartate complexes have been shown to convert triphenylphosphine (PPh3), cyclohexene, styrene and SO2 to the corresponding OPPh3, 1,2 cyclohexanediol, phenylethyleneglycol and SO42−, respectively.  相似文献   

6.
Addition of primary amines to N-[2-(diphenylphosphanyl)benzoyloxy]succinimide affords 2-diphenylphosphanylbenzamides, Ph2PC6H4C(O)NHR (R = C(CH3)3, 3; R = H, 4; R = CH2CH2CH3, 5; R = CH(CH3)2, 6). Addition of NiCl(eta3-CH2C6H5)(PMe3) to the deprotonated potassium salts of the amides and subsequent treatment of two equivalents of B(C6F5)3 to the resulting products furnishes eta3-benzyl zwitterionic nickel(II) complexes, [Ph2PC6H4C(O)NR-kappa2N,P]Ni(eta3-CH2C6H5) (R = C6H5, 9; R = C(CH3)3, 10; R = H, 11; R = CH2CH2CH3, 12; R = CH(CH3)2, 13). Solid structures of 9, 11, 13 and the intermediate eta1-benzyl nickel(II) complexes, [Ph2PC6H4C(O)NR-kappa2N,P]Ni(eta1-CH2C6H5)(PMe3) (R = C6H5, 7; R = C(CH3)3, 8) were determined by X-ray crystallography. When ethylene is added to the eta3-benzyl zwitterionic nickel(II) complexes, butene is obtained by the complexes 9-12 but complex 13 provides very high molecular-weight branched polyethylene (Mw, approximately 1300000) with excellent activity (up to 5200 kg mol-1 h-1 at 100 psi gauge).  相似文献   

7.
The reaction of [NiBr(2)(bpy)(2)] (bpy = 2,2'-bipyridine) with organic phosphinic acids ArP(O)(OH)H [Ar = Ph, 2,4,6-trimethylphenyl (Mes), 9-anthryl (Ant)] leads to the formation of binuclear nickel(II) complexes with bridging ArP(H)O(2)(-) ligands. Crystal structures of the binuclear complexes [Ni(2)(μ-O(2)P(H)Ar)(2)(bpy)(4)]Br(2) (Ar = Ph, Mes, Ant) have been determined. In each structure, the metal ions have distorted octahedral coordination and are doubly bridged by two arylphosphinato ligands. Magnetic susceptibility measurements have shown that these complexes display strong antiferromagnetic coupling between the two nickel atoms at low temperatures, apparently similar to binuclear nickel(II) complexes with bridging carboxylato ligands. Cyclic voltammetry and in situ EPR spectroelectrochemistry show that these complexes can be electrochemically reduced and oxidized with the formation of Ni(I),Ni(0)/Ni(III) derivatives.  相似文献   

8.
An asymmetric dinuclear ligand, N-4-methyl-homopiperazine-N′-[N-(2-pyridylmethyl)-N-2-(2-pyridylethyl)amine]-1,3-diaminopr-opan-2-ol (HL) and two dinuclear Ni(II) complexes [Ni2L(DNBA)2]ClO4 (1) and [Ni2L(BPP)2]ClO4·2H2O (2) (3,5-dinitrobenzoic acid, bisphenyl phosphate) have been synthesized and characterized. Single crystal X-ray crystallographic analysis reveals that the coordination environments of the two Ni(II) atoms in complexes 1 and 2 are five and six coordinate, respectively. The phosphodiesterase activity of a di-Ni(II) complex Ni2L formed in situ from a 2:1 mixture of Ni2+ and HL was investigated using bis(4-nitrophenyl) phosphate (BNPP) as the substrate. The pH dependence of the rate of BNPP cleavage in aqueous buffer indicates a bell-shaped profile with an optimum at about pH 8.4, which is parallel to the formation of the dinuclear species [Ni2LOH]2+ according to UV–vis spectroscopy. At pH 8.4 and 25 °C, the k cat (7.40 × 10?5 s?1) is ca.106-fold higher than that of the uncatalyzed reaction. A possible mechanism for BNPP cleavage promoted by Ni2L is proposed.  相似文献   

9.
Reactions of 1,1'-bis(dipheny1phosphino)cobaltocene with Co(PMe(3))(4), Ni(PMe(3))(4), Fe(PMe(3))(4), Ni(COD)(2), FeMe(2)(PMe(3))(4) or NiMe(2)(PMe(3))(3) afford a series of novel dinuclear complexes [((Me(3)P)[lower bond 1 start]Co(η(5)-C(5)H(4)[upper bond 1 start]PPh(2)))((Me(3)P)M[upper bond 1 end](η(5)-C(5)H(4)P[lower bond 1 end]Ph(2)))] (M = Co(1), Ni(2) and Fe(3)) [Co(η(5)-C(5)H(4)[upper bond 1 start]PPh(2))(2)Ni[upper bond 1 end](COD)](4), [Co(η(5)-C(5)H(4)[upper bond 1 start]PPh(2))(2)Ni[upper bond 1 end](PMe(3))(2)] (5) and [((Me(3)P)[lower bond 1 start]Co(Me)(η(5)-C(5)H(4)[upper bond 1 start]PPh(2)))((Me(3)P)Fe[upper bond 1 end](Me)(η(5)-C(5)H(4)P[lower bond 1 end]Ph(2)))] (6). Reactions of 1,1'-bis(dipheny1phosphino)ferrocene with Ni(PMe(3))(4), NiMe(2)(PMe(3))(3), or Co(PMe(3))(4) gives rise to complexes [Fe(η(5)-C(5)H(4)[upper bond 1 start]PPh(2))(2)M[upper bond 1 end](PMe(3))(2)] (M = Ni (7), Co (8)). The complexes 1-8 were spectroscopically investigated and studied by X-ray single crystal diffraction. The possible reaction mechanisms and structural characteristics are discussed. Density functional theory (DFT) calculations strongly support the deductions.  相似文献   

10.
Russian Journal of General Chemistry - Reactions of 2,2′-bipyridine platinum(II) complexes with 2-aminoethanethiol or 2,2′-disulfanediyldi-(ethan-1-amine) afforded new complexes...  相似文献   

11.
A series of ruthenium(II) acetonitrile, pyridine (py), carbonyl, SO2, and nitrosyl complexes [Ru(bdmpza)(O2CR)(L)(PPh3)] (L = NCMe, py, CO, SO2) and [Ru(bdmpza)(O2CR)(L)(PPh3)]BF4 (L = NO) containing the bis(3,5-dimethylpyrazol-1-yl)acetato (bdmpza) ligand, a N,N,O heteroscorpionate ligand, have been prepared. Starting from ruthenium chlorido, carboxylato, or 2-oxocarboxylato complexes, a variety of acetonitrile complexes [Ru(bdmpza)Cl(NCMe)(PPh3)] (4) and [Ru(bdmpza)(O2CR)(NCMe)(PPh3)] (R = Me (5a), R = Ph (5b)), as well as the pyridine complexes [Ru(bdmpza)Cl(PPh3)(py)] (6) and [Ru(bdmpza)(O2CR)(PPh3)(py)] (R = Me (7a), R = Ph (7b), R = (CO)Me (8a), R = (CO)Et (8b), R = (CO)Ph) (8c)), have been synthesized. Treatment of various carboxylato complexes [Ru(bdmpza)(O2CR)(PPh3)2] (R = Me (2a), Ph (2b)) with CO afforded carbonyl complexes [Ru(bdmpza)(O2CR)(CO)(PPh3)] (9a, 9b). In the same way, the corresponding sulfur dioxide complexes [Ru(bdmpza)(O2CMe)(PPh3)(SO2)] (10a) and [Ru(bdmpza)(O2CPh)(PPh3)(SO2)] (10b) were formed in a reaction of the carboxylato complexes with gaseous SO2. None of the 2-oxocarboxylato complexes [Ru(bdmpza)(O2C(CO)R)(PPh3)2] (R = Me (3a), Et (3b), Ph (3c)) showed any reactivity toward CO or SO2, whereas the nitrosyl complex cations [Ru(bdmpza)(O2CMe)(NO)(PPh3)](+) (11) and [Ru(bdmpza)(O2C(CO)Ph)(NO)(PPh3)](+) (12) were formed in a reaction of the acetato 2a or the benzoylformato complex 3c with an excess of nitric oxide. Similar cationic carboxylato nitrosyl complexes [Ru(bdmpza)(O2CR)(NO)(PPh3)]BF4 (R = Me (13a), R = Ph (13b)) and 2-oxocarboxylato nitrosyl complexes [Ru(bdmpza)(O2C(CO)R)(NO)(PPh3)]BF4 (R = Me (14a), R = Et (14b), R = Ph (14c)) are also accessible via a reaction with NO[BF4]. X-ray crystal structures of the chlorido acetonitrile complex [Ru(bdmpza)Cl(NCMe)(PPh3)] (4), the pyridine complexes [Ru(bdmpza)(O2CMe)(PPh3)(py)] (7a) and [Ru(bdmpza)(O2CC(O)Et)(PPh3)(py)] (8b), the carbonyl complex [Ru(bdmpza)(O2CPh)(CO)(PPh3)] (9b), the sulfur dioxide complex [Ru(bdmpza)(O2CPh)(PPh3)(SO2)] (10b), as well as the nitrosyl complex [Ru(bdmpza)(O2C(CO)Me)(NO)(PPh3)]BF4 (14a), are reported. The molecular structure of the sulfur dioxide complex [Ru(bdmpza)(O2CPh)(PPh3)(SO2)] (10b) revealed a rather unusual intramolecular SO2-O2CPh Lewis acid-base adduct.  相似文献   

12.
13.
Two binuclear metal-radical complexes, formed by the reaction of M(hfac)(2) x 2H(2)O (M = Mn or Ni; hfac = hexafluoroacetylacetonate) with the 1,5-dimethyl-3-(4,6-dimethylpyrimidin-2-yl)-6-oxoverdazyl radical (3), were synthesized. The binuclear Mn complex 5 (i.e., 3[Mn(hfac)(2)](2)) crystallizes in the monoclinic space group C2/c: C(30)H(17)N(6)O(9)F(24)Mn(2), a = 29.947(3), b = 17.143(3), c = 16.276(3) A, beta = 123.748(3)*, Z = 4. The compound consists of two pseudo-octahedral Mn(II) ions, both bearing two hfac ancillary ligands, bridged by the bis(bidentate) radical 3. The temperature dependence of the magnetic susceptibility of 5 reveals moderate antiferromagnetic exchange between each of the Mn(II) ions and the verdazyl radical (J = -48 cm(-1)). The S = 9/2 ground spin state of the complex was corroborated by low-temperature magnetization versus field measurements. In contrast, the magnetic susceptibility versus temperature behavior of 6 (whose molecular structure is presumed to be analogous to that of 5) indicates that the two Ni(II) ions are strongly ferromagnetically coupled to the verdazyl radical (J = +220 cm(-1)). The magnetization versus field behavior of 5 is consistent with an S = 5/2 ground-state species.  相似文献   

14.
The synthesis of 1-(4-nitrobenzyl)-2-chloromethyl benzimidazole, which undergoes a nucleophilic substitution with pyridine in the absence of additional base, is reported. The key steps are the reaction of 1,2-phenylenediamine to give exclusively the mono-substituted product and the avoidance of minor by-products via the use of glycolic acid for the cyclisation step. The X-ray structures of 1-(4-nitrobenzyl)-2-chloromethyl benzimidazolium chloride and 1-[1-(4-nitrobenzyl)benzimidazol-2-ylmethyl]pyridinium chloride are presented.  相似文献   

15.
We report on the synthesis, characterization, and electrochemical application of Ca(OH)2-, Co(OH)2-, and Y(OH)3-coated Ni(OH)2 tubes with mesoscale dimensions. These composite tubes were prepared via a two-step chemical precipitation within an anodic alumina membrane under ambient conditions. The morphology and structure of the as-synthesized samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and high-resolution transmission electron microscopy (HRTEM) equipped with energy dispersive spectroscopy (EDS). The results showed that the size of the tubes was of mesoscale dimension and the proportion of the tube morphology was about 95%. The as-prepared composite tubes were further investigated as the positive-electrode materials of rechargeable alkaline batteries. Electrochemical measurements revealed that the Ni(OH)2 tubes coated with Ca(OH)2, Co(OH)2, and Y(OH)3 exhibited superior electrode properties including high discharge capacity, excellent high-temperature and high-rate discharge ability, and good cycling reversibility. The mechanism analysis suggests that both the coated layers and the unique hollow-tube structures play an indispensable role in optimizing the electrochemical performance of nickel hydroxide electrodes.  相似文献   

16.
Complexes [Re(ONCMe2)(CO)3(bipy)] (1) and [Re(ONCMe2)(CO)3(phen)] (2), synthesized by reaction of the respective triflato precursors [Re(OTf)(CO)3(N-N)] (N-N = bipy, phen) with KONCMe2, feature O-bonded monodentate oximato ligands. Compound [Re(CO)3(phen)(HONCMe2)]BAr'4 (3), with a monodentate N-bonded oxime ligand, was prepared by reaction of [Re(OTf)(CO)3(phen)], HONCMe2, and NaBAr'4. Deprotonation of 3 afforded 2. The oximato complexes reacted with p-tolylisocyanate, p-tolylisothiocyanate, maleic anhydride, and tetracyanoethylene, affording the products of the insertion of the electrophile into the Re-O bond, compounds 4-7. One representative of each type of compound was fully characterized, including single-crystal X-ray diffraction. The reactions of 1 and 2 with dimethylacetylenedicarboxylate were found to involve first an insertion as the ones mentioned above but followed by incorporation of water, loss of acetone, and formation of the charge-separated neutral amido complexes 9 and 10. The structure of 9 and 10 was determined by X-ray diffraction, and key features of their electronic distribution were studied using a topological analysis of the electron density as obtained from the Fourier map.  相似文献   

17.
A new zinc vanadate Zn2(OH)VO4 has been synthesized by an electrochemical-hydrothermal method and characterized by single crystal X-ray diffraction. The compound crystallizes in the orthorhombic system, space group Pnma, a = 14.645(1) Å, b = 6.0215(5) Å, c = 8.8757(8) Å, V = 782.7(1) Å3, Z = 4, measured at 223 K. In the structure, rutile-type [ZnO6] octahedral chains are interconnected by [VO4] tetrahedra to form a framework of composition [Zn(OH)VO4], the voids of which are filled by Zn cations with trigonal bipyramidal and octahedral coordination. The structure is closely related to that of the adamite-type phases and the minerals descloizite PbZn(OH)VO4 and tsumcorite Pb0.5Zn(H2O)AsO4.  相似文献   

18.
A novel dinuclear nickel(II) complex, [Ni2(MOBPT)2Cl2(H2O)2]Cl2 · 7H2O (MOBPT = 4-(p-methoxyphenyl) −3,5-bis(pyridine-2-yl)-1,2,4-triazole), has been synthesized and characterized by elemental analysis, IR and single crystal X-ray diffraction methods. The crystal structure determination shows that the dinuclear Ni2N8 unit is almost planer in which each NiII ion is coordinated by four nitrogen atoms from MOBPT equatorially and a water molecule and a chloride ion axially in a distorted octahedral geometry. Magnetic measurements reveal a relatively weak antiferromagnetic exchange in the complex.  相似文献   

19.
A series of chromium(III) complexes bearing 2-benzoxazolyl-6-aryliminopyridines was synthesized and characterized by IR spectroscopic and CHN analysis. The X-ray crystallographic analysis of complex Cr3 revealed a distorted octahedral geometry. When activated by Et2AlCl, MAO or MMAO, these chromium complexes exhibited activities towards ethylene reactivity. High activities of ethylene oligomerization (up to 9.19 × 106 g mol−1 (Cr) h−1) were observed in the catalytic system using MMAO as a cocatalyst, meanwhile good activities of ethylene polymerization were achieved (up to 5.20 × 105 g mol−1 (Cr) h−1) by using MAO as a cocatalyst. Various reaction parameters were investigated in detail, and the steric and electronic effects of ligands were discussed.  相似文献   

20.
The present article describes ruthenium nitrosyl complexes with the {RuNO}(6) and {RuNO}(7) notations in the selective molecular frameworks of [Ru(II)([9]aneS(3))(bpy)(NO(+))](3+) (4(3+)), [Ru(II)([9]aneS(3))(pap) (NO(+))](3+) (8(3+)) and [Ru(II)([9]aneS(3))(bpy)(NO˙)](2+) (4(2+)), [Ru(II)([9]aneS(3))(pap)(NO˙)](2+) (8(2+)) ([9]aneS(3) = 1,4,7-trithiacyclononane, bpy = 2,2'-bipyridine, pap = 2-phenylazopyridine), respectively. The nitrosyl complexes have been synthesized by following a stepwise synthetic procedure: {Ru(II)-Cl} → {Ru(II)-CH(3)CN} → {Ru(II)-NO(2)} → {Ru(II)-NO(+)} → {Ru(II)-NO˙}. The single-crystal X-ray structure of 4(3+) and DFT optimised structures of 4(3+), 8(3+) and 4(2+), 8(2+) establish the localised linear and bent geometries for {Ru-NO(+)} and {Ru-NO˙} complexes, respectively. The crystal structures and (1)H/(13)C NMR suggest the [333] conformation of the coordinated macrocyclic ligand ([9]aneS(3)) in the complexes. The difference in π-accepting strength of the co-ligands, bpy in 4(3+) and pap in 8(3+) (bpy < pap) has been reflected in the ν(NO) frequencies of 1945 cm(-1) (DFT: 1943 cm(-1)) and 1964 cm(-1) (DFT: 1966 cm(-1)) and E°({Ru(II)-NO(+)}/{Ru(II)-NO˙}) of 0.49 and 0.67 V versus SCE, respectively. The ν(NO) frequency of the reduced {Ru-NO˙} state in 4(2+) or 8(2+) however decreases to 1632 cm(-1) (DFT: 1637 cm(-1)) or 1634 cm(-1) (DFT: 1632 cm(-1)), respectively, with the change of the linear {Ru(II)-NO(+)} geometry in 4(3+), 8(3+) to bent {Ru(II)-NO˙} geometry in 4(2+), 8(2+). The preferential stabilisation of the eclipsed conformation of the bent NO in 4(2+) and 8(2+) has been supported by the DFT calculations. The reduced {Ru(II)-NO˙} exhibits free-radical EPR with partial metal contribution revealing the resonance formulation of {Ru(II)-NO˙}(major)?{Ru(I)-NO(+)}(minor). The electronic transitions of the complexes have been assigned based on the TD-DFT calculations on their DFT optimised structures. The estimated second-order rate constant (k, M(-1) s(-1)) of the reaction of the nucleophile, OH(-) with the electrophilic {Ru(II)-NO(+)} for the bpy derivative (4(3+)) of 1.39 × 10(-1) is half of that determined for the pap derivative (8(3+)), 2.84 × 10(-1) in CH(3)CN at 298 K. The Ru-NO bond in 4(3+) or 8(3+) undergoes facile photolytic cleavage to form the corresponding solvent species {Ru(II)-CH(3)CN}, 2(2+) or 6(2+) with widely varying rate constant values, (k(NO), s(-1)) of 1.12 × 10(-1) (t(1/2) = 6.2 s) and 7.67 × 10(-3) (t(1/2) = 90.3 s), respectively. The photo-released NO can bind to the reduced myoglobin to yield the Mb-NO adduct.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号