首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 8 毫秒
1.
Multivariate standardisation is proposed for the successful chemiluminescence determination of chromium based on luminol-hydrogen peroxide reaction. In an extended concentration range, non-linear calibration model is needed. The studied instrumental situations were different detection cells, instruments, assemblies, time and their possible combinations. Chemiluminescence kinetic registers have been transferred using piecewise direct standardisation (PDS) method. The optimisation of transfer parameters has been carried out based on the prediction residual error criteria.Non-linear principal component regression (NL-PCR) and non-linear partial least square regression (NL-PLS) were chosen for modelling the relationship signal-concentration of transferred registers.Good accuracy and precision were obtained for water samples. The concentrations of chromium were statistically in agreement with reference method values and with recovery studies. Therefore, it is possible to transfer chemiluminescence curves without loosing ability of prediction, even the presence of a non-linear behaviour.  相似文献   

2.
A gas-diffusion flow injection method for the chemiluminescence detection of Hg(II) based on the luminol-H2O2 reaction was developed. The analytical procedure involved the injection of Hg(II) samples and standards into a 1.50 M H2SO4 carrier stream, which was subsequently merged with a reagent stream of 0.60% (w/v) SnCl2 in 1.50 M H2SO4 to reduce Hg(II) to metallic Hg. The gas-diffusion cell was thermostated at 85 °C to enhance the vaporisation of metallic Hg. Mercury vapour, transported across the Teflon membrane of the gas-diffusion cell into the acceptor stream containing 1.00 × 10−4 M KMnO4 in 0.30 M H2SO4, was oxidised back to Hg(II). The acceptor stream was merged with a reagent stream containing 2.50 M H2O2 in deionised water and then the combined stream was merged with another reagent stream containing 7.50 × 10−3 M luminol in 3.00 M NaOH at a confluence point opposite to the photomultiplier tube of the detection system. The chemiluminescence intensity of the luminol-H2O2 reaction was enhanced by the presence of Hg(II) in the acceptor stream. The corresponding increase was related to the original concentration of Hg(II) in the samples and standards. Under optimal conditions, the chemiluminescence gas-diffusion flow injection method was characterised by a linear calibration range between 1 μg L−1 and 100 μg L−1, a detection limit of 0.8 μg L−1 and a sampling rate of 12 samples per hour. It was successfully applied to the determination of mercury in seawater and river samples.  相似文献   

3.
Wang L  Yang P  Li Y  Zhu C 《Talanta》2006,70(1):219-224
A novel flow-injection chemiluminescence (FI-CL) method for the determination of estrogens is proposed, based upon its enhancing effect on the CL reaction of luminol with hydrogen peroxide catalyzed by tetrasulfonated manganese phthalocyanine (MnTSPc) in alkaline solution. Under the selected experimental conditions, a linear relationship was obtained between the CL intensity and the concentration of estrone in the range of 1.0 × 10−7 to 1.0 × 10−6 mol/l, estradiol in the range of 9.0 × 10−8 to 1.0 × 10−6 mol/l and estriol in the range of 3.0 × 10−7 to 2.0 × 10−6 mol/l, respectively. The detection limits were 5.1 × 10−8 mol/l for estrone, 7.2 × 10−9 mol/l for estradiol and 6.5 × 10−8 mol/l for estriol with a relative standard deviation of 2.8% for 5.0 × 10−7 mol/l estrone, 2.4% for 1.0 × 10−7 mol/l estradiol, and 3.1% for 7.0 × 10−7 mol/l estriol (n = 11). This method has been applied to the determination of estrogen in pharmaceutical injections and tap water with satisfactory results.  相似文献   

4.
A simple and sensitive method for the determination of nanomolar levels of hydrogen peroxide (H2O2) in seawater has been developed and validated. This method is based on the reduction of H2O2 by ferrous iron in acid solution to yield hydroxyl radical (OH) which reacts with benzene to produce phenol. Phenol is separated from the reaction mixture by reversed phase high performance liquid chromatography and its fluorescence intensity signals were measured at excitation and emission of 270 and 298 nm, respectively. Under optimum conditions, the calibration curve exhibited linearity in the range of (0-50) × 103 nmol L−1 H2O2. The relative standard deviations for five replicate measurements of 500 and 50 nmol L−1 H2O2 are 1.9 and 2.4%, respectively. The detection limit for H2O2, defined as three times the standard deviation of the lowest standard solution (5 nmol L−1 H2O2) in seawater is 4 nmol L−1. Interference of nitrite ion (NO2) on the fluorescence intensity of phenol was also investigated. The result indicated that the addition of 10 μmol L−1 NO2 to seawater samples showed no significant interference, although, the addition of 50 μmol L−1 NO2 to the seawater samples decreases the fluorescence intensity signals of phenol by almost 40%. Intercomparison of this method with well-accepted (p-hydroxyphenyl) acetic acid (POHPAA)-FIA method shows excellent agreement. The proposed method has been applied on-board analysis of H2O2 in Seto Inland seawater samples.  相似文献   

5.
A novel alternative for the simultaneous determination of compounds with similar structure is described, using the whole chemiluminescence-time profiles, acquired by the stopped-flow technique, in combination with mathematical treatments of multivariate calibration. The proposed method is based on the chemiluminescent oxidation of morphine and naloxone by their reaction with potassium permanganate in an acidic medium, using formaldehyde as co-factor. The whole chemiluminescence-time profiles, acquired using the stopped-flow technique in a continuous-flow system, allowed the use of the time-resolved chemiluminescence (CL) data in combination with multivariate calibration techniques, as partial least squares (PLS), for the quantitative determination of both opiate narcotics in binary mixtures.In order to achieve overcoat the additivity of the CL profiles and beside to obtain CL profiles for each drug the most separated as possible in the time, the optimum chemical conditions for the CL emission were investigated. The effect of common emission enhancers on the CL emission obtained in the oxidation reaction of these compounds in different acidic media was studied. The parameters selected were sulphuric acid 1.0 mol L−1, permanganate 0.2 mmol L−1 and formaldehyde 0.8 mol L−1. A calibration set of standard samples was designed by combination of a factorial design, with three levels for each factor and a central composite design. Finally, with the aim of validating the chemometric proposed method, a prediction set of binary samples was prepared. Using the multivariate calibration method proposed, the analytes were determined in synthetic samples, obtaining recoveries of 97-109%.  相似文献   

6.
Based on the enhancement of chemiluminescence (CL) of luminol-hydrogen peroxide-gold nanoparticles system by fluoroquinolones (FQs), a novel and rapid CL method is reported for the determination of FQs derivatives. Under the optimum conditions, the CL intensity is proportional to the concentration of FQs derivative in solution. The corresponding linear regression equations are established over the range of 0.08-1.28 μg/mL for norfloxacin, 0.013-1.32 μg/mL for ciprofloxacin, 0.014-1.4 μg/mL for lomefloxacin, 0.029-1.46 μg/mL for fleroxacin, 0.02-1.0 μg/mL for ofloxacin and 0.01-1.44 μg/mL for levofloxacin, respectively. The limits of detection (S/N = 3) are 3.2, 9.5, 7.0, 9.0, 8.0, and 8.0 ng/mL with the relative standard deviation (n = 11) 4.3, 1.5, 1.9, 1.3, 1.6 and 2.1% for norfloxacin, ciprofloxacin, lomefloxacin, fleroxacin, ofloxacin and levofloxacin, respectively. This proposed method has been applied to detect FQs derivatives in human urine successfully.  相似文献   

7.
Well‐established, linear multivariate calibration methods such as multivariate least‐squares regression (MLR), principal component regression (PCR), or partial least squares (PLS) have two limitations: (i) measured data must be linearly related to the response variables and (ii) predictor variables xn = 1, …, N cannot be coupled to each other. For evaluation of nonlinear data, however, these restrictions need to be overcome and thus polynomial multivariate least‐squares regression (PMLR or “response surfaces”) has been introduced here. PMLR is based on multivariate least squares but incorporates all combinations of predictor variables up to a user‐selected polynomial order (e.g., including u or v = 0). Because of the inclusion of such coupled terms and their powers, PMLR models are better adapted to model nonlinear data and can help to enhance the prediction step's accuracy and precision. PMLR has been based on MLR because it facilitates—unlike PCR or PLS—a physical and chemical interpretation of the predictors. Hence, the origins and the relevance of nonlinear and/or coupled predictors can be investigated. The details of the PMLR algorithm and its implementation are presented along with a method for model optimization utilizing gradients of response surfaces. Newly developed PMLR models up to quintic order have been applied to predict a chromatograph's peak resolution as a function of six‐instrument parameters. It has been demonstrated that PMLR is better capable than MLR and PCR to describe these nonlinear and coupled instrument parameters. In addition, the novel software tool has been utilized for model optimization to determine instrument parameters, which result in the best chromatographic resolution. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

8.
The determination of hydrogen peroxide (H2O2) and the evaluation of scavenging capacity against this species were performed using five colorimetric reactions, which were adapted to flow injection analysis. The reactions chosen were based on the oxidation of iodide (I method), on the formation of titanium-peroxide complex (TiP method), on the formation of titanium-xylenol orange-peroxide complex (TiXoP method), on the oxidation of 3,3′,5,5′-tetramethylbenzidine (TMB method) and on the co-oxidation of phenol-4-sulfonic acid and 4-aminoantipyrine (PSA/4-AAP method). The operational conditions were studied in order to improve the sensitivity of each method. Concerning to the method sensitivity, the ranking order was TMB method > I method > TiXoP method ∼PSA/4-AAP method > TiP method. All methods showed an excellent repeatability (RSD < 2%) and, except for I method, relative deviations from the reference method were <1.9%. The FIA manifolds were adapted to perform the determination of scavenging capacity against H2O2 and glutathione (GSH) was applied as model compound. TiP and TiXoP methods were not suitable as no inhibition or an increase of analytical signal was attained. PSA/4-AAP method was chosen for further application to dietary phenolics and pharmaceutical compounds, providing IC50 values for those compounds that are fast reacting antioxidants.  相似文献   

9.
The preconcentration of chromium(III) by solid phase extraction and its determination from aqueous solutions by flame atomic absorption spectrometry (FAAS) is investigated by applying an experimental design. The optimization of the preconcentration variables such as pH of the sample solution, flow rate of the sample solution and concentration of elution solution was carried out using 23 full factorial design. The most important parameter affecting the preconcentration of chromium is the concentration of eluent. In the established experimental conditions, chromium can be determined with a relative standard deviation of 2.0% (N = 7) for a chromium concentration of 100 μg L−1. The detection limit for chromium was 1 μg L−1 (N = 20). The adsorption capacity of Amberlyst 36 is found to be 90.9 mg g−1 for chromium. Effect of other ions on the procedure was also evaluated. The method was validated by the analysis of certified reference materials (tea leaves GBW 07605 and fish tissue IAEA-407). The method was applied to the determination of chromium in waste water, dam water, carrot, parsley and lettuce. Correspondence: Ali Rehber Türker, Department of Chemistry, Faculty of Science and Arts, Gazi University, TR-06500 Ankara, Turkey  相似文献   

10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号