首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This work reports the principle, advantage, and limitations of analytical photoion spectroscopy which has been applied to dissociative photoionization processes for diatomic molecules such as H2, N2, CO, and NO. Characteristic features observed in the differential photoion spectra are summarized with a focus on (pre)dissociation of(i) multielectron excitation states commonly observed in the inner valence regions,(ii) shape resonances, and(iii) doubly charged parent ions. Possible origins for negative peaks in the differential spectra are discussed. This spectroscopy is applied to the reported photoion branching ratios for D2 (and H2 at high energies). The main findings are as follows: (1) The direct dissociation of theX 2Σ g + (1sσ g ) state of D 2 + , the two-electron excited state1Σ u + (2pσ u 2sσ g ) of D2, and the2Σ u + (2pσ u ) state of D 2 + appear clearly in the differential spectrum, as previously observed for H2. (2) Decay of H 2 + (D 2 + ) to H+ (D+) above 38 eV is due to the direct dissociation of highly excited states of H 2 + (D 2 + ) such as the2Σ g + (2sσ g ) and high-lying Rydberg states converging on H 2 2+ (D 2 2+ ). (3) In the ionization continuum of H 2 2+ (D 2 2+ ) peculiar dissociation pathways are observed. The differential photoion spectra for O2 derived from the reported photoion branching ratios are also presented. The (pre)dissociation of theb 4Σ g ? ,B 2Σ g ? , III2Π u ,2Σ u ? , and2,4Σ g ? states of O 2 + appears as the corresponding positive values in the spectra in accord with previous observations. Some other dissociation pathways possibly contributing to the spectra are discussed including dissociative double ionization.  相似文献   

2.
Using crossed beams of ground state alkali atoms A (A = Li, Na, K, Rb, Cs) and metastable He(23 S), He(21 S) atoms, we have measured the energy spectra of electrons resulting in the respective Penning ionization processes at: thermal collision energies. The data are interpreted to yield the well depthD e * of the2Σ interaction potentials as follows: He(23 S)+A:D e * (A=Li)=868(20) meV;D e * (Na)=740(25) meV;D e * (K)=591(24) meV;D e * (Rb)=546(18) meV;D e * (Cs)=533(18) meV. He(21 S)+A:D e * (Li)=330(17) meV;D e * (Na)=277(24) meV;D e * (K)=202(23) meV;D e * (Rb)=219(18) meV;D e * (Cs)=277(18) meV. The well depth for He(23 S)+A(2Σ) is always close to 80% of the well depth for Li(2s)+A(X 1Σ). The ionization cross sections for He(21 S)+A are about 3 to 4 times larger than those for He(23 S)+A.  相似文献   

3.
We discuss the stability of doubly charged Auclusters. From a calculation using semi-empirical linear combination of atomic-orbitals (LCAO) method, we conclude that Au 2 2+ in an excited state (3Σ u + or1Σ u + ) is metastable with an energy barrier of about 0.3 eV. In the ground state (1Σ g + ) Au 2 2+ is unstable, except for small values of Δ(=ε s d ) (difference between thes andd atomic energy levels of Au), when a very shallow minimum appears in the binding energy curve. These results are critically discussed and compared with those obtained by different calculations.  相似文献   

4.
The absolute cross section for photodissociation of Ar2N 2 + was measured as a function of wavelength in the 470–550 nm range. A structureless broad band was observed; the cross section has a maximum of ~ 210 × 10?18 cm2 at ~ 500 nm. The measurement of the photofragment time-of-flight spectrum shows that(1) N 2 + , Ar+ and Ar 2 + are produced in the photodissociation of Ar2N 2 + in the wavelength range studied, and that(2) the observed visible absorption band is ascribable to a parallel-type transition of Ar2N 2 + , which possibly retains a linear geometry.  相似文献   

5.
6.
Photofragment spectroscopy of N 2 + has been studied in the wavelength range 343–404 nm using an excimer-pumped dye laser with a spectral resolution of 0.2 cm?1. The observed bands are assigned to transitions from thev″=23?26 levels of theX 2Σ g + state to highlying rovibrational levels (v′≈46–48) of theB 2Σ u + state, forming quasibound (predissociating) states above the dissociation limit N+(3 P)+N(4 S 0). Measurement of the photofragment kinetic energies allows to establish an absolute energy scale for the transitions with respect to the dissociation limit. Molecular constants for the lower and upper states of the observed transitions are determined. The measurements allow the first direct determination of the N 2 + dissociation energyD 0 0 (N 2 + ). Some high-resolution (0.04 cm?1) measurements show the fine-structure splitting and lifetime broadening of the excitation lines.  相似文献   

7.
Metastable decay of cluster ions has been discovered only recently. It was noted that one has to take this metastable decay into account when using mass spectrometry to probe neutral clusters, because ion abundance anomalies in mass spectra of rare gas and molecular clusters are caused by delayed metastable evaporation of monomers following ion production. Moreover, it was found that(i) the individual metastable reaction rates k depend strongly on cluster size and cluster ion production pathways and that(ii) there exists experimental evidence (k=k(t)) and a theoretical prediction that a given mass selected cluster ion generated by electron impact ionization of a nozzle expansion beam will comprise a range of metastable decay rates. In addition, it was discovered that metastable Ar cluster ions which lose two monomers in the μs time regime decay via sequential decay series Ar n + *→Ar n?1 + *→Ar n?2 + * with cluster sizes 7≤n≤10 andn=3 (similar results were obtained recently in case of N2 cluster ions). Conversely, the dominant metastable decay channel of Ar 4 + * into Ar 2 + was found to proceed predominantly via a single step fissioning process.  相似文献   

8.
Rotational-vibrational transitions of the triplet system 13Σ g + ← 13Σ u + of the Na2 molecule have been investigated around $\bar v = 13970 cm^{ - 1} $ by Doppler-free polarization spectroscopy in a heat pipe and by resonant two-step photoionization in a collimated cold argon beam, seeded with sodium vapor. The fine- and hyperfine structure of the transitions is partly resolved. The analysis of the measured spectra and a theoretical discussion of the expected multiplet structure yields the rotational constantsB v (v′=17)=0.0866(4) cm?1 for the upper andB v (v″=0)=0.0533(4) cm?1 for the lower state. The difference Δb=b(3Σ u )?b(3Σ g ) of the hyperfine coupling constantsb turns out to be Δb=80 MHz.  相似文献   

9.
Synchrotron radiation is used to selectively excite the chlorine molecule in the VUV spectral range. Stationary fluorescence spectra of the 11Σ u + state are observed following primary excitation of 11Σ u + and 21Σ u + . The bound-free part of the spectra is analysed with the aid of quantum mechanical computer simulations. A potential energy curve is constructed which is an approximation of the adiabatic double well potential energy curve of the 11Σ u + state. The inner well is characterized byT e =(73428±50) cm?1,r e =(1.85 ± 0.05) Å; for the outer well holdT e =(64631±50) cm?1,r e =(2.57±0.05) Å, ω e =(261±5) cm?1, ω e x e =(0.668±0.01) cm?1 (35Cl2;v′<30). The potential energy curve is successfully checked with fluorescence excitation spectra. Within the error limits, the results of a former synchrotron radiation study are verified. It is ruled out, that the Cl2 “γ-state” recently observed with laser spectroscopic methods, can be attributed to the outer well of 11Σ u + .  相似文献   

10.
Experimental excimer continua emitted by electric discharge plasma of krypton and xenon were interpreted as the 1 Σ u + 1 Σ g + bound-free transitions. The relative populations of the lower vibrational levels of the 1 Σ u + state were derived fitting experimental spectra with the theoretical ones.  相似文献   

11.
The accuracy for the direct measurement of the dissociation energy of the N 2 + B2Σ u +-state was significantly improved by using frequency doubled laser light, which enables the authors to excite from lowerv″-levels and additionally to calibrate the fundamental laser wavelength with an iodine cell. The obtained value is:D 8(N 2 + )=70248±6 cm?1.  相似文献   

12.
New data on enthalpy and entropy contributions to the energy barrier of β-pinene thermal isomerization were obtained. The rate of β-pinene conversion is higher in supercritical EtOH (P = 120 atm) than in the gas phase (P ≤ 1 atm, without solvent, or for inert carrier gas N2) at equal temperatures. The highest activation energy E Σ of total β-pinene conversion is also observed in reactions in the supercritical (sc) condition. Activation parameters ΔH Σ # , ΔS Σ # , and ΔG Σ # depend strongly on the reaction pressure. Thus, at P ≤ 1 atm (gas-phase reaction) the values of ΔS Σ # are negative, while at sc conditions at P = 120 atm is positive. The linear dependences lnk Σ0 ? E Σ and ΔS Σ # ? ΔS Σ # indicate an isokinetic relation (IKR) and enthalpy-entropy compensation effect (EEC). The isokinetic temperature was calculated (T iso = 605.5 ± 22.7 K). It was shown that elevation of temperature reduces the value of ΔG Σ # (T) upon sc thermolysis only, whereas in all gas-phase reactions ΔG Σ # (T) increases. At equal reaction temperatures, the greatest values of K eq # (T) proved to be typical for thermolysis in sc-EtOH. We hypothesize that the rate of total β-pinene conversion increases dramatically due to a considerable shift in equilibrium toward higher concentrations of activated complex y TS # . A detailed analysis of activation parameters shows that the IKR and EEC coincide, evidence of a common mechanism of β-pinene conversion observed under different reaction conditions, including thermolysis in sc-EtOH.  相似文献   

13.
The7Li2 21 Σ u + X 1 Σ g + electronic transition has a bound-bound and a bound-free part due to the double minimum nature of the upper 21 Σ u + state. We have studied this transition both experimentally and by performing spectral simulations. When inner well was excited the bound-free part at 4525 Å was observed due to the collisions between Li 2 * and argon. We found that when levels above the barrier are excited the bound-free emission is strongly affected by collisional relaxation of Li 2 * by Li atoms. Conditions for the observation of the bound-free part are discussed.  相似文献   

14.
The time-independent Hamiltonians ? 0 and ?=? 0 + V have a discrete spectrum, eigenvalues, and eigenvectors E s (o) , ¦s(o) resp. E s, ¦s〉. If the RS perturbation theory can be applied here then an operator \(\mathfrak{p}\) with the property $$\left| s \right\rangle ^{(n + 1)} = \frac{1}{{n + 1}}\mathfrak{p}\left| s \right\rangle ^{(n)} , E_s^{(n + 1)} = \frac{1}{{n + 1}}\mathfrak{p}E_s^{(n)} $$ exists where ¦s(n) and E s (n) denote the n-th order corrections of perturbation theory if E s (o) is nondegenerate. In the case of degeneracy the operation \(\mathfrak{p}\) remains defined and can always be used todetermine perturbation corrections of quantum mechanical expressions which are invariant in zerothorder under transformations of the basis in degenerate subspaces of ? 0. The equations $$\left| s \right\rangle = \sum\limits_n^{0,\infty } {\left| s \right\rangle ^{(n)} = e^\mathfrak{p} \left| s \right\rangle ^{(0)} } , E_s = \sum\limits_n^{0,\infty } {E_s^{(n)} } = e^\mathfrak{p} E_s^{(0)} $$ correspond to a basis transformation where nondegenerate eigenvectors ¦s∝> (o) and eigenvalues E s (o) of ? 0 transform into eigenvectors ¦s∝> and eigenvalues E s of ?. Examples show the usefulness of this formulation.  相似文献   

15.
Potential curves for the ground (2Σ u + ) and the three lowest excited states of the Xe 2 + dimer ion (2Π g ,2Π u ,2Σ g + ) have been calculated using pseudopotentials in MRD-CI (multi-reference single anddouble excitationconfigurationinteraction) calculations. Spin-orbit interaction — leading to the six states 1.(1/2) u , 1.(3/2) g , 1.(3/2) u , 1.(1/2) g , 2.(1/2) u , 2.(1/2) g — has been taken into account using a semiempirical technique [1]. Subsequently, starting with a relaxed Xe 2 + ion in its ground state, the potential energy surface for the system Xe-Xe 2 + was studied. We found that the collinear approach of the Xe atom leads to the most stable geometry. This is a linear symmetric molecule with bond lengths of 6.38 bohr. In the bestT-shaped structure, the Xe atom is 7.83 bohr away from the midpoint of the Xe 2 + (r=6.1 bohr) dimer. The calculated binding energy of 0.25 eV for the equilibrium structure of the Xe 3 + molecule (i.e. the linear symmetric geometry), is in very good agreement with experimental results of 0.27 ± 0.02 eV [2].  相似文献   

16.
17.
The gas phase association of CH3 with the HAr2 cluster to form a vibrationally/rotationally excited CH 4 * molecule is used as a model to study microscopic solvation dynamics. A potential energy surface for the reactive system is constructed from a previously fitted H + CH3 ab initio potential and 12-6 Lennard-Jones Ar-Ar, Ar-C, and Ar-H potentials. Classical trajectory calculations performed with the chemical dynamics computer program VENUS are used to investigate the CH3 + HAr2 → CH 4 * + Ar2 reaction dynamics. Reaction is dominated by a mechanism in which the CH3 “strips” the H-atom from HAr2 during large impact parameter collisions. For a large initial relative translational energy the CH3 + HAr2 → CH 4 * + Ar2 cross section is the same as that for H + CH3 association, so that HAr2 acts like a “heavy” H-atom. However, at a low initial relative translational energy, the long-range Ar2—CH3 attractive potential apparently makes the CH3 + HAr2 association cross section larger than that for H + CH3. Partitioning of energy to the CH 4 * and Ar2 products is consistent with a stripping mechanism. The initial and final relative translational energies are nearly identical and the CH 4 * rotational energy is controlled by the initial CH3 rotational energy. The velocity and orbital tilt scattering angles, θ(v i ,v f ) and θ(l i ,l f ), respectively, are consistent with the stripping mechanism. On average only a small amount of the product energy is partitioned to Ar2 vibration/rotation and CH 4 * + Ar2 relative translation.  相似文献   

18.
Non-empirical calculations of CASSCF energies, electric dipole moments, Einstein coefficients, matrix elements of the operator of spin-orbital interaction between states of different multiplicity in a model complex 6,8[Mn-O2] of C 2v symmetry have been made in 3-21G, 6-31G, 6-31G** basis sets. The crosssections of the potential energy surface (PES) of the ground and excited states were built. It is found that oxygen bonding to manganese is possible when excited atoms of manganese collide with molecular oxygen, singlet oxygen with Mn[6 S 5/2] atoms, or in a close contact O2[X3Σ g ? ] + Mn[6 S 5/2] and is determined by charge transfer states 6,8CTS(Mn+O 2 ? ). Mechanisms of singlet oxygen activation/deactivation are determined by a considerably increased probability of electric dipole transitions b 1Σ g + ?a 1Δg, a 1Δg?X3Σ g ? , b 1Σ g + ?X3Σ g ? induced in oxygen in the collision process.  相似文献   

19.
Within the adiabatic channel treatment of ionmolecule capture we have calculated the low temperature capture rate constants of N2(1Σ g + ) and O2(3Σ g ? )in collisions with positive and negative ions. In both cases, the charge-quadrupole and the anisotropic charge-induced dipole interactions produce noticeable deviations from the Langevin rate constant. The rate constants calculated with account for the anisotropic interaction, in addition, are substantially affected by nuclear symmetry; in the case of O2(3Σ g ? ), the fine-structure spin-spin interaction strongly manifests itself in the rate constants.  相似文献   

20.
As a first attempt to study the stability of the H*4 (C3v ) cluster we have used the MRD-CI method and a medium size basis set to calculate various sections of the potential energy surfaces of its ground and first excited states. We show that these correlate to the (X 1Σ g 1 X 1Σ g + ) and (X 1Σ g + B 1Σ u + ) states of the two H2 constituents respectively. Finally, we report on the calculation of the diabatic matrix elements of the vibronic interaction in the region of the avoided crossing which is crucial to the stability of H 4 + .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号