首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
We explore the dynamics of harmonically confined single electron quantum dots as a function of dot size under time-dependent magnetic field. The system of interest is a 2-D system in the presence of a perpendicular magnetic field. We show that for given strengths of the confinement potential and effective mass; periodic, as well as exponential variation in the strength of the magnetic field could invite interesting features in the dynamics of the system. Also, the pattern of time evolution of eigenstates of the unperturbed system reveals significant size-dependence. The fluctuation in the magnetic field strength from its initial value is found to modulate the dynamical aspects in a prominent way.  相似文献   

2.
In this study we review concepts of double quantum dot, quantum chaos with shifted 1/N expansion method associated with semiquantum nonlinear system. We present a numerical study of two interacting particle motions in a time dependent magnetic field in quartic geometry. It is evident that, the area where the interaction particle motions are stochastic decreases as the spin interaction strength decreases, as well as, the magnetic field strength decreases. Moreover, we describe their possible connections with other aspects of quantum information. Furthermore, we pay attention to a system of two interacting electrons in a two-dimensional quartic confinement potential and hypothesis leading to analytical energy expression. The dynamics of double quantum dot gallium arsenide are of great importance and are also emphasized.  相似文献   

3.
The magnetic field-dependent heavy hole excitonic states in a strained Ga0.2In0.8As/GaAs quantum dot are investigated by taking into account the anisotropy,non-parabolicity of the conduction band,and the geometrical confinement.The strained quantum dot is considered as a parabolic dot of InAs embedded in a GaAs barrier material.The dependence of the effective excitonic g-factor as a function of dot radius and the magnetic field strength is numerically measured.The interband optical transition energy as a function of geometrical confinement is computed in the presence of a magnetic field.The magnetic field-dependent oscillator strength of interband transition under the geometrical confinement is studied.The exchange enhancements as a function of dot radius are observed for various magnetic field strengths in a strained Ga0.2In0.8As/GaAs quantum dot.Heavy hole excitonic absorption spectra,the changes in refractive index,and the third-order susceptibility of third-order harmonic generation are investigated in the Ga0.2In0.8As/GaAs quantum dot.The result shows that the effect of magnetic field strength is more strongly dependent on the nonlinear optical property in a low-dimensional semiconductor system.  相似文献   

4.
Here we have investigated the influence of magnetic field and confinement potential on nonlinear optical property, third harmonic generation (THG) of a parabolically confinement quantum dot in the presence of Rashba spin orbit interaction. We have used density matrix formulation for obtaining optical properties within the effective mass approximation. The results are presented as a function of confining potential, magnetic field, Rashba spin orbit interaction strength and photon energy. Our results indicate that an increase of Rashba spin orbit interaction coefficient produces strong effect on the peak positions of THG. The role of confinement strength and spin orbit interaction strength as control parameters on THG have been demonstrated.  相似文献   

5.
We explore the profiles of electro-optic effect (EOE) of impurity doped quantum dots (QDs) in presence and absence of noise. We have invoked Gaussian white noise in the present study. The quantum dot is doped with Gaussian impurity. Noise has been administered to the system additively and multiplicatively. A perpendicular magnetic field acts as a confinement source and a static external electric field has been applied. The EOE profiles have been followed as a function of incident photon energy when several important parameters such as electric field strength, magnetic field strength, confinement energy, dopant location, relaxation time, Al concentration, dopant potential, and noise strength possess different values. In addition, the role of mode of application of noise (additive/multiplicative) on the EOE profiles has also been scrutinized. The EOE profiles are found to be adorned with interesting observations such as shift of peak position and maximization/minimization of peak intensity. However, the presence of noise and also the pathway of its application bring about rich variety in the features of EOE profiles through some noticeable manifestations. The observations indicate possibilities of harnessing the EOE susceptibility of doped QD systems in presence of noise.  相似文献   

6.
A three-electron quantum dot under an external magnetic field was studied. A number of phase diagrams have been obtained to demonstrate how the variation of the magnetic field and/or the parameters of confinement would lead to the occurrence of doublet–quadruplet transitions. Both the confinement with parabolic potential and the square well potential have been considered. We show that the parameters of confinement alter the ground state of the quantum dot from a spin doublet to a spin quadruplet. This result indicates that the quantum dot can be used as a good candidate for qubit of a quantum computer.  相似文献   

7.
We analytically and numerically discuss the stability and dynamics of neutral atoms in a two-dimensional optical lattice subjected to an additional harmonic trap potential and artificial magnetic field. The harmonic trap potential plays a key role in modifying the equilibrium state properties of the system and stabilizing the cyclotron orbits of the condensate.Meanwhile, the presence of the harmonic trap potential and lattice potential results in rich cyclotron dynamics of the condensate. The coupling effects of lattice potential, artificial magnetic field, and harmonic trap potential lead to single periodic, multi-periodic or quasi-periodic cyclotron orbits of the condensate. So we can control the cyclotron dynamics of neutral atoms in optical lattice by manipulating the strength of harmonic confinement, artificial magnetic field, and initial conditions. Our results provide a direct theoretical evidence for the cyclotron dynamics of neutral atoms in optical lattices exposed to the artificial gauge magnetic field and harmonic trap potential.  相似文献   

8.
The electronic structure of dynamic quantum dots formed by surface acoustic waves potential and the confinement potential produced by gate voltage has been investigated within the spin-density-functional theory. We found the addition energy of this kind quantum dot in general decreases as the electron number increases, so the basic feature of the quantized acoustoelectric current with multi-plateaus can be reproduced. The addition energy needed for a second electron entering into the dynamic quantum dot is found to be about 2.21 meV, which is in good agreement with experimental estimations. Moreover, the formation of the Wigner molecule-like states is observed when the number of electrons in the dot exceeds three. By the calculated addition energy and the evolution of the electron density in the presence of a magnetic field, we also explained the influence of the magnetic field on the acoustoelectric current appeared in the experiments.  相似文献   

9.
Suvajit Pal  Manas Ghosh 《哲学杂志》2019,99(19):2457-2486
In this paper, we explore the linear, third-order nonlinear, and total optical absorption coefficient (OAC) and refractive index change coefficient (RICC) of a GaAs doped quantum dot/quantum ring (QD/QR) with parabolic-inverse squared potential in conjunction with modified Gaussian confinement and taking into account the presence of on-centre shallow donor and or acceptor impurity. Calculations are done via the compact density matrix formalism and the iterative method. The two-dimensional parabolic QD/QR is subjected to uniform magnetic field oriented perpendicularly to the plane of the structure. The energy levels and wave function are derived within the framework of effective-mass and parabolic band approximation. The results exhibit that the OACs and RICC are clearly affected by different parameters of the applied confinement, strength of magnetic field, and the presence of impurity. The variation of confinement potential, nature of impurity, dot radius, cyclotron frequency of the parabolic confinement potential, and geometric parameter of the on-centre repulsive potential lead to either a red-shift or a blue-shift of the resonant peaks of the OACs and of the maximum and minimum of the RICC together with significant variations of the magnitudes of these resonant structures.  相似文献   

10.
Using the method of numerical matrix diagonalization within the effective-mass approximation, we investigated a D--center quantum dot system subjected to a Gaussian potential confinement. We obtain the dependence of binding energies of the ground-states of the D--center on the depth of Gaussian potential and the magnetic field strength. The result shows clearly that the binding energies of the ground-states of the D--center are rather sensitive to the depth of potential and the strength of magnetic field.  相似文献   

11.
An electron gas in a strongly oblated ellipsoidal quantum dot with impenetrable walls in the presence of external magnetic field is considered. Influence of the walls of the quantum dot is assumed to be so strong in the direction of the minor axis (the OZ axis) that the Coulomb interaction between electrons in this direction can be neglected and considered as two-dimensional. On the basis of geometric adiabaticity we show that in the case of a few-particle gas a powerful repulsive potential of the quantum dot walls has a parabolic form and localizes the gas in the geometric center of the structure. Due to this fact, conditions occur to implement the generalized Kohn theorem for this system. The parabolic confinement potential depends on the geometry of the ellipsoid, which allows, together with the magnetic field to control resonance frequencies of transitions by changing the geometric dimensions of the QD.  相似文献   

12.
The properties of the low-lying states of a negative donor center trapped by a spherical quantum dot, which is subjected to a parabolic potential confinement, are investigated in the absence of magnetic field. The calculations have been performed by means of the exact diagonalization of the Hamiltonian matrix within the effective-mass approximation. We find that there is only one bound state the D- center in a spherical parabolic quantum dot in the absence of magnetic field. The binding energy of the ground state is obtained as a function of the dot size. Moreover, the critical confined potential radius value at which the negative donor center changes from unbound to bound is obtained.  相似文献   

13.
We make an extensive investigation of linear, third-order nonlinear, and total optical absorption coefficients (ACs) of impurity doped quantum dots (QDs) in presence and absence of noise. The noise invoked in the present study is a Gaussian white noise. The quantum dot is doped with repulsive Gaussian impurity. Noise has been introduced to the system additively and multiplicatively. A perpendicular magnetic field acts as a source of confinement and a static external electric field has been applied. The AC profiles have been studied as a function of incident photon energy when several important parameters such as optical intensity, electric field strength, magnetic field strength, confinement energy, dopant location, relaxation time, Al concentration, dopant potential, and noise strength take on different values. In addition, the role of mode of application of noise (additive/multiplicative) on the AC profiles has also been analyzed meticulously. The AC profiles often consist of a number of interesting observations such as one photon resonance enhancement, shift of AC peak position, variation of AC peak intensity, and bleaching of AC peak. However, presence of noise alters the features of AC profiles and leads to some interesting manifestations. Multiplicative noise brings about more complexity in the AC profiles than its additive counterpart. The observations indeed illuminate several useful aspects in the study of linear and nonlinear optical properties of doped QD systems, specially in presence of noise. The findings are expected to be quite relevant from a technological perspective.  相似文献   

14.
We study the conductance of a square quantum dot, modeling the potential with a self-consistent Thomas-Fermi approximation. The resulting potential is characterized by level statistics indicative of mixed chaotic and regular electron dynamics within the dot in spite of the regular geometry of the gates defining the dot. We calculate numerically, for the case of a quantum dot with soft confinement, the weak localization (WL) correction. We demonstrate that this confining potential may generate either Lorentzian or linear lineshapes depending on the number of modes in the leads. Finally, we present experimental WL data for a lithographically square dot and compare the results with numerical calculations. We analyze the experimental results and numerical simulations in terms of semiclassical and random matrix theory (RMT) predictions and discuss their limitations as far as real experimental structures are concerned. Our results indicate that direct application of the above predictions to distinguish between chaotic and regular dynamics in a particular cavity can not always lead to reliable conclusions as the shape and magnitude of the WL correction can be strongly sensitive to the geometry-specific, non-universal features of the system. Received 13 May 1998  相似文献   

15.
We investigate the Fock-Darwin states of the massless chiral fermions confined in a graphitic parabolic quantum dot. In light of Klein tunneling, we analyze the condition for confinement of the Dirac fermions in a cylindrically symmetric potential. New features of the energy levels of the Dirac electrons as compared to the conventional electronic systems are discussed. We also evaluate the dipole-allowed transitions in the energy levels of the dots. We propose that in the high magnetic field limit, the band parameters can be accurately determined from the dipole-allowed transitions.  相似文献   

16.
In this paper the direct interband transitions in cylindrical quantum dot (QD) made of GaAs are studied in the presence of a magnetic field. Two models of QD confinement potential are discussed. For both models the expressions for absorption coefficients and dependencies of effective threshold frequencies of absorption on the value of applied magnetic field and on geometrical sizes of QD are obtained. The selection rules corresponding to different transitions between quantum levels are found.  相似文献   

17.
Two interacting electrons in a Gaussian confining potential quantum dot are considered under the influence of a perpendicular homogeneous magnetic field. The energy levels of the low-lying states are calculated as a function of magnetic field. Calculations are made by using the method of few-body physics within the effective-mass approximation. A ground state behavior (singlet→triplet state transitions) as a function of the strength of a magnetic field has been found in the weak confinement case as a two-electron quantum dot with parabolic confining potential.  相似文献   

18.
The linear and nonlinear optical absorption in a disk-shaped quantum dot (DSQD) with parabolic potential plus an inverse squared potential in the presence of a static magnetic field are theoretically investigated within the framework of the compact-density-matrix approach and iterative method. The energy levels and the wave functions of an electron in the DSQD are obtained by using the effective mass approximation. Numerical calculations are presented for typical GaAs/AlAs DSQD. It is found that the optical absorption coefficients are strongly affected not only by a static magnetic field, but also by the strength of external field, the confinement frequency and the incident optical intensity.  相似文献   

19.
We investigate the excitation kinetics of a repulsive impurity doped quantum dotinitiated by oscillations of various confinement sources. The dopant is considered to bepropagating under damped condition. For simplicity, we have considered an inherentlylinear motion of the dopant and the impurity potential has been assumed to have a Gaussiannature. The damping strength and the oscillation frequencies of dot confinement sources ofelectric and magnetic origin have been found to fabricate the said kinetics in a delicateway. The present study sheds light on how the individual or combined oscillations ofdifferent confinement sources could design the excitation kinetics in presence ofdamping.  相似文献   

20.
We explore the dynamics of harmonically confined single electron quantum dots as a function of dot size when an external time varying pulsed electric field is switched on. The system of interest is a 2-D system in the presence of a perpendicular magnetic field. We show that for given strengths of the confining potentials, the pattern of time evolution of eigenstates of the unperturbed system reveals significant size-dependence. The pulse duration time is also found to modulate the dynamical aspects in a prominent way.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号