首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present Communication compares the thermosensitivity in dilute aqueous solutions of well-defined copolymers composed of 95% of 2-(2-methoxyethoxy)ethyl methacrylate (MEO2MA) and 5% of oligo(ethylene glycol) methacrylate (OEGMA, Mn = 475 g.mol-1) and poly(N-isopropylacrylamide) (PNIPAM) samples having similar degrees of polymerization and chain-ends. The thermoresponsive behavior of P(MEO2MA-co-OEGMA) was found to be overall comparable, and in some cases, superior to PNIPAM. Hence, P(MEO2MA-co-OEGMA) copolymers can be considered as ideal structures, which combine both the properties of poly(ethylene glycol) and PNIPAM in a single macromolecule.  相似文献   

2.
温敏材料由于优异的性能和潜在的应用价值而具有良好的发展前景.利用超分子自组装单层(SAM)与表面引发聚合(SIP)技术将2-(2-甲氧乙氧基)甲基丙烯酸乙酯(MEO2MA)与聚乙二醇甲基丙烯酸酯(OEGMA526)的共聚物poly(MEO2MAco-OEGMA526)接枝于金表面,探索了不同引发剂溶液浓度(χIsol)、单体OEGMA526摩尔浓度(C526)与干态膜厚度(d)对该高分子刷性质的影响.应用石英晶体微天平(QCM)对其温敏行为进行研究,结果表明:在χIsol=1%与C526=5%条件下制备的高分子刷,最低临界溶解温度(LCST)为34℃;其LCST由OEGMA526的单体摩尔浓度决定,不受膜厚的影响.该高分子刷在接枝生物素后其与链霉亲和素的结合实验证明,高分子刷末端的羟基为其官能团化提供了契机.该易衍生化温敏高分子刷为发展新型温敏材料提供了研究基础.  相似文献   

3.
以丙烯酰胺(AM)和丙烯酸(AA)单体的水溶液为分散相,失水山梨醇单油酸脂(Span80)/聚氧乙烯失水山梨醇脂肪酸脂(Tween80)/异辛烷为分散介质,分别以N,N′-亚甲基双丙烯酰胺(MBA)、过硫酸铵/亚硫酸氢钠((NH4)2S2O8/NaHSO3)为交联剂和氧化还原引发剂,在30℃进行反相微乳液聚合制备了一系列不同单体摩尔百分数的P(AM-co-AA)微凝胶.通过傅立叶红外光谱、浊度法、透射电镜(TEM)和动态光散射(DLS)等测试手段分别对微凝胶特征官能团的存在、pH敏感性、微观形态、粒径大小及粒径分布等进行表征分析.结果表明,共聚物中存在AM和AA结构单元;样品的TEM照片显示在原料中AA的摩尔百分数为60%时,P(AM-co-AA)微凝胶粒子的数均粒径为90 nm左右,呈现非规则球形;DLS结果表明,P(AM-co-AA)微凝胶与PAM微凝胶相比具有较宽的粒径分布,且随原料中AA摩尔百分数增加,粒径分布逐渐变宽;P(AM-co-AA)微凝胶具有良好的pH敏感性,敏感pH值与AA的解离常数有关,通过调节pH值可以迅速控制自身体积的溶胀与收缩.  相似文献   

4.
Zhang R  Wang Y  Du FS  Wang YL  Tan YX  Ji SP  Li ZC 《Macromolecular bioscience》2011,11(10):1393-1406
A family of thermoresponsive cationic copolymers (TCPs) that contain branched PEI 25 K as the cationic segment and poly(MEO(2)MA-co-OEGMA(475)) as the thermosensitive block (TP) is prepared. The DNA binding capability, physicochemical properties, and biological performance of the TCPs are studied. All of these TCPs can condense DNA to form polyplexes with diameters of 150-300 nm and zeta potentials of 7-32 mV at N/P ratios between 12 and 36. The length of TP block is a key factor for shielding the positive surface charge of the polyplexes and protecting them against protein adsorption. TCPs with a higher TP content have a lower cytotoxicity while the best transfection performance is achieved by the TCPs with longest TP length, reaching a level of the intact PEI 25 K in the presence of serum.  相似文献   

5.
6.
The flocculation behavior of poly(N-isopropylacrylamide) (pNIPAM) microgels containing polar -(OCH(2)CH(2))(3)OH chains, incorporated by the copolymeric components (triethyleneglycol methacrylate, TREGMA), in aqueous NaCl solution was investigated. Determination of the critical flocculation temperatures (CFTs) and the critical flocculation concentrations (CFCs) of the microgels at 45 degrees C shows that polar -(OCH(2)CH(2))(3)OH chains have different influence on the flocculation behavior of the microgels at temperatures below and above their volume phase transition temperatures (VPTTs). The flocculation of the microgels becomes more difficult with the increase of -(OCH(2)CH(2))(3)OH chains below the VPTT. In contrast, the microgels flocculate more easily with more -(OCH(2)CH(2))(3)OH chains above the VPTT. Preliminary investigation on the flocculation kinetics of the microgels further shows that -(OCH(2)CH(2))(3)OH chains have different effects on the flocculation rate at temperatures below and above the VPTT. The flocculating rate of the microgels at 25 degrees C decreases with the increase of -(OCH(2)CH(2))(3)OH chains. While the flocculation rate at 45 degrees C increases with the increase of -(OCH(2)CH(2))(3)OH chains due to their enrichment on the surface of the microgels as a result of the temperature-induced volume-phase transition, which was verified by variable temperature (1)H NMR spectroscopy. The polar -(OCH(2)CH(2))(3)OH chains rich in the surface increase the attractive force between the microgels, promoting the flocculation.  相似文献   

7.
In the present study we report a facile and reproducible method of preparing magnetic thermosensitive hybrid material based on P(NIPAM) microgels covered with gamma-Fe2O3 nanoparticles of 6-nm size. The iron oxide nanoparticles provided magnetic response to the microgels. In addition, the presence of the magnetic nanoparticles on the microgels altered their swelling behavior and shifted their volume phase transition temperature to higher values. In particular, for inorganic shells with 18% (w/w) of magnetic nanoparticles the volume phase transition of the microgels was shifted from 36 to 40 degrees C. In contrast, for shells consisting of 38% (w/w) magnetic nanoparticles the volume phase transition of the microgels was almost blocked, thus indicating that the microgel thermal response was strongly affected by the presence of the inorganic nanoparticles. The synthesized thermosensitive magnetic microgels are envisaged to be ideal for potential applications as thermosensitive targeted drug delivery systems.  相似文献   

8.
The dynamics of polymers on the nm and ns scales inside responsive microgels was probed by means of Neutron Spin Echo (NSE) experiments. Four different microgels were studied: poly(N-isopropylacrylamide) (PNIPAM) and poly(N,N-diethylacrylamide) (PDEAAM) microgels, a P(NIPAM-co-DEAAM) copolymer microgel and a core-shell microgel with a PDEAAM core and a PNIPAM shell. These four different microgel systems were investigated in a D(2)O/CD(3)OD solvent mixture with a molar CD(3)OD fraction of x(MeOD) = 0.2 at 10 °C. The PNIPAM and the P(NIPAM-co-DEAAM) microgels are in the collapsed state under these conditions. They behave as solid diffusing objects with only very small additional contributions from internal motions. The PDEAAM particle is swollen under these conditions and mainly Zimm segmental dynamics can be detected in the intermediate scattering function at high momentum transfer. A cross-over to a collective diffusive motion is found for smaller q-values. The shell of the PDEAAM-core-PNIPAM-shell particle is collapsed, which leads to a static contribution to S(q,t); the core, however, is swollen and Zimm segmental dynamics are observed. However, the contributions of the Zimm segmental dynamics to the scattering function are smaller as compared to the pure PDEAAM particle. Interestingly the values of the apparent solvent viscosities inside the microgels as obtained from the NSE experiments are higher than for the bulk solvent. In addition different values were obtained for the PDEAAM microgel, and the PDEAAM-core of the PDEAAM-core-PNIPAM-shell particle, respectively. We attribute the strongly increased viscosity in the PDEAAM particle to enhanced inhomogeneities, which are induced by the swelling of the particle. The different viscosity inside the PDEAAM-core of the PDEAAM-core-PNIPAM-shell microgel could be due to a confinement effect: the collapsed PNIPAM-shell restricts the swelling of the PDEAAM-core and may modify the hydrodynamic interactions in this restricted environment inside the microgel.  相似文献   

9.
A Co3O4 nanorod supported Pd electro-catalyst for the methanol electro-oxidation(MEO) has been fabricated by the combination of hydrothermal synthesis and microwave-assisted polyol reduction processes. The crystallographic property and microstructure have been characterized using XRD, SEM and TEM. The results demonstrate that Pd nanoparticles(Pd NPs) with a narrow particle size distribution(3-5 nm) are uniformly deposited onto the surface of Co3O4 nanorods. Electrochemical measurements show that this catalyst having a larger electrochemically active surface area and a more negative onset-potential exhibits enhanced catalytic activity of 504 m A/mg Pd for MEO comparing with the Pd/C catalyst(448 m A/mg Pd). The dependency of log I against logv reveals that MEO on Pd-Co3O4 electrode is under a diffusion control.Electrochemical impedance spectroscopy(EIS) measurement agrees well with the CV results. The minimum charge transfer resistance of MEO on Pd-Co3O4 is observed at-0.05 V, which coincides with the potential of MEO peak.  相似文献   

10.
The characterization of temperature- and pH-sensitive poly-N-isopropylacrylamide (poly-NIPAM) microgel particles, produced by surfactant-free emulsion polymerization, has been extensively reported. In the work described here poly(NIPAM) gel particles, cross-linked with N-N'-methylenebisacrylamide (BA), have been produced using inverse suspension polymerization. These particles have been termed "minigels" here since they are somewhat larger than conventional microgels. Results suggest that minigel particles are formed as a dilute suspension, within the aqueous dispersed (droplet) phase. The hydrodynamic diameter of the minigel particles produced in this work is 相似文献   

11.
A Co3 O4 nanorod supported Pd electro-catalyst for the methanol electro-oxidation (MEO) has been fabricated by the combination of hydrother-mal synthesis and microwave-assisted polyol reduction process...  相似文献   

12.
The use of microgels for controlled uptake and release has been an area of active research for many years. In this work copolymer microgels of N-isopropylacrylamide (NIPAM) and acrylic acid (AAc), containing different concentrations of AAc and also cross-linking monomer, have been prepared and characterized. These microgels are responsive to pH and temperature. As well as monitoring the equilibrium response to changes in these variables, the rates of swelling/de-swelling of the microgel particles, on changing either the pH or the temperature, have also been investigated. It is shown that the rate of de-swelling of the microgel particles containing AAc is much faster than the rate of swelling, on changing the pH appropriately. This is explained in terms of the relative mobilities of the H(+) and Na(+) ions, in and out of the particles. It was observed that the microgels containing AAc, at pH 8, de-swelled relatively slowly on heating to 50 degrees C from 20 degrees C. This is attributed to the resistance to collapse associated with the large increase in counterion concentration inside the microgel particles. The swelling and de-swelling properties of these copolymer microgels have also been investigated in aqueous poly(ethylene oxide) (PEO) solutions, of different MW (2000-300 000). The corresponding absorbed amounts of PEO from solution onto the microgels have also been determined using a depletion method. The results, as a function of AAc content, cross-linker concentration, PEO MW, pH, and temperature, have been rationalized in terms of the ease and depth of penetration of the PEO chains into the various microgel particles and also the H-bonding associations between PEO and either the -COOH of the AAc moeities and/or the H of the amide groups (much weaker). Finally, the adsorption and desorption of the PEO molecules in to and out of the microgel particles have been shown to be extremely slow compared to normal diffusion time scales for polymer adsorption onto rigid surfaces.  相似文献   

13.
利用原子转移自由基聚合(ATRP)方法合成了组成递变的2-甲基-2-丙烯酸-2-(2-甲氧基乙氧基)乙酯(MEO2MA)与寡聚乙二醇甲醚甲基丙烯酸酯(OEGMA)共聚物P(MEO2MA-co-OEGMA). 核磁共振氢谱(1HNMR)和凝胶渗透色谱(GPC)表征了聚合物的结构、分子量及其分布. 通过测定透光率、粘度、激光粒度分析了共聚物组成对共聚物低临界溶解温度(LCST)的影响, 考察了共聚物组成、浓度、盐浓度、盐种类、温度对其溶液相行为的影响. 结果表明: 所合成的共聚物具有温度敏感性, 其LCST 可以通过合成时共聚单体MEO2MA与OEGMA投料比的改变来调控, 随着OEGMA量的增加共聚物的LCST升高, 共聚物溶液浓度升高其LCST减小, 随盐溶液浓度的增大共聚物的LCST降低, 共聚物的LCST降低主要受盐溶液中阴离子价数的影响; HCl的引入使共聚物水溶液的LCST降低; NaOH的引入使共聚物水溶液的LCST升高.  相似文献   

14.
Microgels have unique and versatile properties allowing their use in forward osmosis areas as a draw agent. In this contribution, poly(4-vinylpyridine) (P4VP) was synthesized via RAFT polymerization and then grafted to a poly(N-Isopropylacrylamide) (PNIPAAm) crosslinking network by reverse suspension polymerization. P4VP was successfully obtained by the quasiliving polymerization with the result of nuclear magnetic resonance and gel permeation chromatography characterization. The particle size and particle size distribution of the PNIPAAm-g-P4VP microgels containing 0, 5, 10, 15 and 20 wt% P4VP were measured by means of a laser particle size analyzer. It was found that all the microgels were of micrometer scale and the particle size was increased with the P4VP load. Inter/intra-molecular-specific interactions, i.e., hydrogen bond interactions were then investigated by Fourier infrared spectroscopy. In addition, the water flux measurements showed that all the PNIPAAm-g-P4VP microgels can draw water more effectively than a blank PNIPAAm microgel. For the copolymer microgel incorporating 20 wt% P4VP, the water flux was measured to be 7.48 L∙m−2∙h−1.  相似文献   

15.
We report studies of the effect of hydrothermal treatment on physical properties such as crystalline phase, size, and morphology of nanosized cadmium sulfide (CdS) particles. CdS precipitates have been synthesized by the reaction of Cd(NO(3))(2) with Na(2)S at room temperature. These CdS precipitates have been hydrothermally treated in the range 120-240 degrees C with variation of the treatment time. The effects of acid catalysts and other additives were also investigated. The particles prepared were characterized by XRD, TEM, and BET methods. With increased hydrothermal treatment temperature and time, crystallization from amorphous to crystalline form, cubic or hexagonal, and an increase of particle size occurred. CdS particles of well-developed hexagonal form were obtained at a hydrothermal treatment temperature of 240 degrees C; the primary hexagonal grain size was on the order of 20-30 nm. The addition of an acid catalyst, HCl, or of Cd(NO(3))(2) into the precipitate sol promoted crystal growth and phase transformation during the hydrothermal treatment, but another additive, Na(2)S, showed the opposite trend. It appears that hydrothermal treatment combined with proper additives could be an effective method for preparation of nanosize crystalline CdS particles. Copyright 2001 Academic Press.  相似文献   

16.
Microgels with photo-, thermally, and pH-responsive properties in aqueous suspension have been synthesized and characterized using dynamic light scattering and UV-visible spectroscopy. The new route involved first preparing poly(N-isopropylacrylamide) (PNIPAM)-allylamine copolymer microgels and a spiropyran photochrome (SP) bearing a carboxylic acid group. Then the functionalized spiropyran was coupled to the microgel via an amide bond. The dark-equilibrated gel particles feature spiropyran molecules in the polar, merocyanine form. After irradiation of visible light, the particle size becomes smaller because spiropyran changes to the relatively nonpolar, closed spiro form. The PNIPAM-SP microgels undergo a volume phase transition in water from a swollen state to a collapsed state with increasing temperature under all light conditions. However, the transition temperature range of the PNIPAM-SP is much broader than that for the PNIPAM without SP. The PNIPAM-SP microgels are monodisperse and self-assemble into a crystalline lattice while in suspension. The UV-visible spectra of an aqueous suspension of PNIPAM-SP microgel in the dark-adapted, merocyanine form showed both an absorption peak around 512 nm due to the merocyanine (giving a reddish color to the suspension) and two sharp peaks from Bragg diffraction of colloidal crystallites. Upon visible irradiation, the 512-nm band bleached significantly due to spiropyran photoisomerization. The spiropyran photoisomerization and accompanying color changes of the suspension were reversible upon alternating dark, UV, and visible light irradiation. Due to the residues of amine groups, the swelling capability of PNIPAM-SP microgels reduces as the pH value is changed from 7 to 10.  相似文献   

17.
Iron (Fe) and aluminum (Al) hydroxides are highly reactive components in environmental processes, such as contaminant fate and transport. Phosphorus (P) sorption by these components can decrease environmental problems associated with excess accumulation of P in soils. The long-term stability of P sorbed by Fe/Al hydroxides is of major concern. Synthetic Fe and Al hydroxides coprecipitated with P (1:1 metal:P molar ratio) were incubated at 70 degrees C for 24 months to simulate natural long-term weathering processes that could influence the stability of sorbed P. Heat incubation (70 degrees C) of the untreated (no P) Al hydroxides resulted in drastic decreases (within the first month of incubation) in oxalate-Al extractability, specific surface area (SSA), and micropore volume with time. These changes were consistent with the formation of pseudoboehmite. Untreated Fe hydroxides showed no formation of crystalline components following heating (70 degrees C) for 24 months. Much smaller changes in oxalate-Al, P extractability, and SSA values were observed in the P-treated Al particles when compared with the untreated. Phosphorus treatment of both Fe and Al hydroxides stabilized the particle surfaces and prevented structural arrangements toward a long-range ordered phase. Slight reduction in SSA of the P-treated particles was related to dehydration phenomena during heating at 70 degrees C. Monitoring of physicochemical properties of the solids after heating at 70 degrees C for 2 years showed that sorbed P may be stable in the long-term. Understanding long term physicochemical properties may help engineers to optimize the Fe/Al hydroxides performance in several environmental/industrial applications.  相似文献   

18.
Monodisperse cationic thermosensitive latex microgels have been prepared by radical-initiated precipitation polymerization of N-isopropylacrylamide, methylene bisacrylamide using 2,2′-azobis(2-amidinopropane hydrochloride) as an initiator and dimethylaminoethyl methacrylate (DMAEMA) as a cationic monomer. The final microgel latexes were characterized with respect to water-soluble polymer formation, particle size and size distribution. Adding cationic monomer (DMAEMA) was found to drastically affect the particle size, but not the size distribution as observed both by transmission electron microscopy and quasielastic light scattering (QELS). However, too high a DMAEMA concentration in the feed composition led to enhanced formation of water-soluble polymer. The volume phase-transition temperature of cleaned microgels examined by QELS (particle size versus temperature) was found to be around 32 °C and was slightly dependent on the concentration of the cationic monomer. The volume phase-transition temperature range becomes broader with increasing cationic monomer concentration. In addition, the pH of the polymerization medium was found to affect the final particle size and amount of water-soluble polymer formed. Received: 29 March 2001 Accepted: 2 July 2001  相似文献   

19.
Intense investigations have been attracted to the development of materials which can reconfigure into 3D structures in response to external stimuli. Herein we report on the design and self-folding behaviors of hydrogels composed of poly(ethylene glycol) methyl ether methacrylate (OEGMA) and 2-(2-methoxyethoxy) ethyl methacrylate (MEO\begin{document}$_{2}$\end{document}MA). Upon immersion into a variety of solvents at room temperature, the resulting P(MEO\begin{document}$_{2}$\end{document}MA-co-OEGMA) hydrogel sheets self-fold into 3D morphologies, and the observed transformation in shape is reversible. We further show that composition of the gel, gaseous environment, and preparation procedure play important roles in the self-folding behavior of the resulting hydrogels. This work provides a facile approach for fabricating self-folding hydrogels.  相似文献   

20.
Crystallization behavior of soft, attractive microgels   总被引:2,自引:0,他引:2  
The equilibrium phase behavior and the dynamics of colloidal assemblies composed of soft, spherical, colloidal particles with attractive pair potentials have been studied by digital video microscopy. The particles were synthesized by precipitation copolymerization of N-isopropylacrylamide (NIPAm), acrylic acid (AAc), and N,N'-methylene bis(acrylamide) (BIS), yielding highly water swollen hydrogel microparticles (microgels) with temperature- and pH-tunable swelling properties. It is observed that in a pH = 3.0 buffer with an ionic strength of 10 mM, assemblies of pNIPAm-AAc microgels crystallize due to a delicate balance between weak attractive and soft repulsive forces. The attractive interactions are further confirmed by measurements of the crystal melting temperatures. As the temperature of colloidal crystals is increased, the crystalline phase does not melt until the temperature is far above the lower critical solution temperature (LCST) of the microgels, in stark contrast to what is typically observed for phases formed due to purely repulsive interactions. The unusual thermal stability of pNIPAm-AAc colloidal crystals demonstrates an enthalpic origin of crystallization for these microgels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号