首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
It has been speculated that adsorption of myelin basic protein (MBP) to the myelin lipid membrane leads to lateral reorganization of the lipid molecules within the myelin membrane. This hypothesis was tested in this study by surface pressure measurement and fluorescent imaging of a monolayer composed of a myelin lipid mixture. The properties of the lipid monolayer before and after addition of MBP into the subphase were monitored. Upon addition of MBP to the monolayer subphase, the surface pressure rose and significant rearrangement of the lipid domains was observed. These results suggest that binding and partial insertion of MBP into the lipid monolayer led to dramatic rearrangement and morphological changes of the lipid domains. A model of adsorption of MBP to the lipid domains and subsequent domain fusion promoted by minimization of electrostatic repulsion between the domains was proposed to account for the experimental observations. The significance of these results in light of the role of MBP in maintaining the myelin structural integrity is discussed.  相似文献   

2.
Despite the essential role played by myelin basic protein (MBP) in stabilizing the multilamellar structure of the myelin membrane, attempts at deciphering the structure of MPB have so far failed. Given that MBP is known to specifically interact with the membrane's lipid components, this study was designed to explore the effects of these lipids on the conformation of the protein by examining its interaction with the lipid triphosphoinositide (TPI). MBP was identified by high-performance liquid chromatography (HPLC) in myelin extracted from cow's brain and its molecular weight determined. In aqueous solution, MBP showed a random coil structure confirmed by its circular dichroism (CD) spectra. Possible structural changes to the protein induced by different proportions of TPI were also explored. The CD spectra of these mixtures indicated that this lipid fails to induce the adoption of a secondary structure by MBP. We then performed monolayer experiments to evaluate the type of interaction that occurs between MBP and TPI. First, the molecular weight of the protein sample was established to determine the state of the MBP within the monolayer by applying the equation for gases to the so-called gaseous zone of the monolayer for the conditions under which the expression holds. The similar molecular weights yielded by HPLC performed on dissolved samples and by the monolayers suggests that, as in solution, in the membrane the protein exists as a monomer. Monolayer data suggest forces of attraction between the two components and, through thermodynamic calculations, it was established that this interaction is spontaneous and the interaction is of the electrostatic type.  相似文献   

3.
本文通过Langmuir单层膜的表面压力-平均分子面积(π-A)曲线的测定与分析,分别对髓鞘碱性蛋白(MBP)与细胞膜中不同头部基团脂质分子二棕榈酰基磷脂胆碱(DPPC)和二棕榈酰基磷脂酰乙醇胺(DPPE)在空气/液体界面上的相互作用过程进行了系统研究.实验结果表明:(1)当界面上脂质含量一定时,亚相中随着MBP浓度的增大,DPPC、DPPE单层膜的等温线向平均分子面积较大的方向移动;(2)在单层膜表面压力为10 mN/m时,一个MBP分子分别结合140±3个DPPC分子和100±3个DPPE分子,随着表面压力增大,当MBP分子分别与两种磷脂分子相互作用时,MBP插入到磷脂单层界面的个数逐渐减少;(3)随着蛋白质浓度的增加,脂分子形成的单层膜变得较为疏松,且MBP分子易于插入到分子头部较小的DPPE单层膜中;(4)蛋白质的存在使DPPC单层膜的表面压力逐渐减小,且蛋白质浓度越大表面压力降低越多,DPPC被MBP带入到亚相中越多;(5)对于DPPE单层膜,蛋白质通过与DPPE相互作用插入到界面膜中,引起表面压力增大,且蛋白质浓度越高,压力变化量越大.  相似文献   

4.
Myelin basic protein (MBP) is the major extrinsic protein of the myelin sheath in the central nervous system. We have examined the predicted structure of segments of MBP using the molecular mechanics program ECEPP83 developed by Scheraga and coworkers as modified by Chuman, Momany, and Schafer. We have focused upon segments containing the Pro-Pro-Pro sequence (residues 100-102), which have been predicted from standard algorithms to exist in a hairpin loop connecting anti-parallel beta-strands. Both the shorter (98-105, 99-105, and 100-105) and longer segments (87-109, 87-118, and 87-120) have been examined. These results indicate potential for a chain reversal in this region. The shorter segments have been studied by others using NMR techniques and the results are compared.  相似文献   

5.
Π/A isotherms of spread β-lactoglobulin and β-casein at the air–water interface are measured under different spreading conditions. While the isotherms do not show drastic effects of the spreading concentration and the compression rate the interfacial shear rheological behaviour is significantly influenced. In particular, the shear viscosity of β-lactoglobulin layers depend directly on the spreading concentration. Significant viscosity increase is obtained at larger surface pressures when the spreading concentration is increased. In contrast the shear rheology of the spread β-casein layers can be normalised by plotting the viscosities as a function of the surface pressure Π. The different behaviour is discussed in terms of denaturation of the β-lactoglobulin during the monolayer formation process by adsorption from the spread thin protein solution layer.  相似文献   

6.
Myelin basic protein (MBP) is the major extrinsic protein of the myelin sheath in the central nervous system. It is this protein that is destroyed in such demyelinating diseases as multiple sclerosis. We have examined the predicted structures of one segment of MBP using the molecular mechanics program ECEPP83 developed by Scheraga and co-workers as modified by Chuman, Momany, and Schafer. We have focused upon a segment, 87-118, containing the Pro-Pro-Pro sequence (residues 100–102), which has been predicted from standard algorithms to exist in a hairpin loop connecting anti-parallel beta-strands. Several local energy minima have been found and reported. Tripoline sequences are not rare in proteins, but their structure and function is still uncertain.  相似文献   

7.
The ability of 2S albumins from sunflower seeds to stabilize oil-in-water emulsions has been investigated, demonstrating that one of the proteins (SFA8) effectively stabilizes emulsions, while another (SF-LTP) does not stabilize emulsions. The surface tension and surface dilation viscosity of these two proteins were measured, rationalizing the emulsifying ability of SFA8 in terms of its ability to form a strongly elastic monolayer at interfaces. The secondary structure changes that occur upon adsorption of SFA8 to the oil/water interface have also been studied by fluorescence, circular dichroism (CD), and Fourier-transform infrared (FT-IR) spectroscopy. It was found that the beta-sheet content of the protein increased upon adsorption at the expense of alpha-helix and random structure. Moreover, FT-IR measurements indicate the presence of intermolecular beta-sheet formation upon adsorption. Fluorescence studies with an oil-soluble fluorescence quencher indicate that the single tryptophan residue present in SFA8 may become located in the oil-phase of the emulsion. This residue is thought to be partially buried in the native protein, and these data suggest that changes in the polypeptide region flanking this residue may play an important role in the molecular rearrangement that occur on or following adsorption to the oil/water interface.  相似文献   

8.
Multilayers consisting of negatively charged phospholipid DMPA and myelin basic protein (MBP) were assembled by Langmuir-Blodgett deposition of floating Langmuir monolayers from the air/water interface to solid substrates. Protein/lipid samples were obtained by binding MBP from the aqueous subphase to the phospholipid monolayers before deposition. The vertical organization of these model membranes (i.e., with organization perpendicular to the substrate surface) was investigated in detail by neutron reflectivity measurements, and the internal distribution of water molecules was determined from the change of contrast after in-situ H2O/D2O exchange. The multilayers were well ordered, with repeating lipid bilayers as fundamental structural unit. MBP was inserted in between adjacent lipid headgroups, such as in the natural myelin membrane. Water molecules in the multilayers were present mainly in the lipid headgroup and protein slab. On exposition of the pure lipid multilayers to a dry atmosphere, a reduction of the bilayer spacing was determined, whereas the global lamellar order was not affected. In contrast, drying of the protein/lipid multilayers induced degradation of the laminar order. The data demonstrate that ordered Langmuir-Blodgett multilayers are versatile model systems for studying how competing interactions between lipid, protein, water, and ions affect the global organization of such multilamellar lipid/protein assemblies. Here, the water molecules were found to be a necessary mediator to maintain the laminar order in a multilayer from DMPA and myelin basic protein.  相似文献   

9.
Summary The adsorption characteristics of PvOH on a surfactant free polystyrene latex surface have been determined from adsorption isotherm and zeta potential measurements. The concentration and shear dependence of the flow behaviour of surfactant free polystyrene latex alone, and together with PvOH, have also been obtained. The. data show that the marked increase in viscosity observed in polystyrene dispersions upon the addition of PvOH is satisfactorily accounted for by the excluded volume effect of an adsorbed monolayer of PvOH on the polystyrene surface.
Zusammenfassung Das Adsorptionsverhalten von Polyvinylalkohol an einer Tensidfreien Polystyrollatem-Oberfläche wurde aus Adsorptionsisothermen und Zetapotentialmessungen bestimmt. Außerdem wurde die Konzentrationsund Scherabhängigkeit des Fließverhaltens der Polystyrolteilchen mit und ohne adsorbiertem Polyvinylalkohol ermittelt. Die Viskositätzunahme der Dispersion durch Zugabe von PvOH kann durch das Kovolumen einer monomolekularen adsorbierten PvOH-Schicht gedeutet werden.
  相似文献   

10.
The ability of proteins to provide stability in foams is greatly influenced by their interfacial dilatational rheological properties. Surface tension response of a pulsatingbubble with an adsorbed layer of beta-lactoglobulin was measured for different frequencies and protein concentrations using a pulsating bubble tensiometer. A methodology, accounting for adsorption/desorption as well as variation of surface concentration due to expansion/contraction, was developed for the evaluation of surface dilatational elasticity and viscosity at different frequencies from these measurements. The adsorption rate constants were inferred from the surface pressure dynamics of protein adsorption using a Langmuir minitrough. The desorption rates were shown to be negligible for beta-lactoglobulin from the surface pressure response of a spread monolayer when subjected to compression in a Langmuir minitrough. The proposed model was employed to infer the interfacial dilatational viscosity and elasticity of an adsorbed beta-lactoglobulin layer at the air-water interface from experimental pulsating bubble data for protein concentrations in the range of 0.01-0.5 wt % at pH 7. As expected, the interfacial dilatational rheological properties were found to be higher at higher protein concentrations, this effect being less pronounced for dilatational elasticity. Heating at 80 degrees C for 30 min was found to result in higher interfacial dilatational viscosity and lower interfacial dilatational elasticity though this difference was within experimental error. The traditional approach for the inference of interfacial dilatational rheological properties is found to overpredict the interfacial dilatational elasticity whereas the viscosity values do not differ significantly from those obtained using the current analysis.  相似文献   

11.
Myelin figures with unusual surface morphology were observed on contacting Tween85 with water. Myelins, which are normally smooth rodlike forms in other surfactants, are in this system found to be with an irregular, rough surface with vesiclelike structures adhered to the myelin tubes. Besides these, smooth myelin figures were also observed. We term the myelin figures with a rough surface eroded myelin figures. The same myelin could show a coexistence of smooth and rough areas with a sharp boundary between the smooth surface at one end whereas the other end shows a rough texture. The transformation of smooth myelins into eroded forms were observed often whereas the reverse is quite rare. In the later stage, the tip of the eroded myelin figures transforms into tentacles and acts as a source for new myelins and the growth of vesiclelike structures which were expelled into the surrounding medium. The eroded myelin figures are stable for a longer period in comparison to simple, smooth rodlike forms. By studying the myelin growth at different temperatures, it was found that eroded myelin figures were stable in the temperature range of 22-42 degrees C and at > 42 degrees C only smooth myelin figures were observed.  相似文献   

12.
An assay based on Western blotting and detection of central nervous system (CNS)-specific antigens was developed to detect brain tissue in processed (heated) meat products. Bands of antigen-bound primary antibodies were visualised through secondary anti-antibodies labelled with peroxidase, which generated chemiluminescence documented by a photographic film. Ponceau-S staining before antibody incubation and molecular mass information on detected antigens after immunoreactions added information supporting correct identification of brain tissue in the meat products. In this approach B50/growth-associated protein (B50), glial fibrillary acidic protein (GFAP), myelin basic protein (MBP), neurofilament (NF), neuron-specific enolase (NSE) and synaptophysin (Syn) proteins were detected in raw luncheon meat and a liver product enriched with brain tissue at a level of 5% (m/m). Only MBP and NSE were considered suitable biomarkers for detection of 1% (m/m) brain tissue in meat products pasteurised at 70 °C or sterilised at 115 °C. The use of an anti-monkey MBP instead of anti-human MBP enabled speciation of the CNS material whether from bovine and ovine brains or from porcine brain tissue. This immunoblot assay potentiates the analysis of approximately 70 samples within 8 h, including sample preparation and the simultaneous probing of NSE and MBP target antigens.  相似文献   

13.
Interactions of lipases with lipid monolayers. Facts and questions   总被引:2,自引:0,他引:2  
Among the proteins, lipolytic enzymes provide a valuable model for studying protein-lipid interactions. Lipases having a catalytic action which is strictly dependent upon the presence of a lipid interface were used in the present study in order to gain better insight into protein-lipid interactions. Most of the data presented here were obtained using the monolayer technique, by recording (either independently or simultaneously) the lipolytic activity, the amount of protein adsorbed to the lipid monolayer, and the surface pressure variations following protein adsorption. Several non-enzymatic proteins were used as controls in order to determine how lipase behaviour differs from that of other proteins. At all initial surface pressures tested, with zwitterionic monolayers, a good correlation was observed between the amount of lipase bound to the monolayer and the surface pressure increase, in agreement with previous studies. Conversely, with neutral lipid monolayers the amount of lipase bound to the monolayer was not found to be surface pressure dependent. This latter behaviour observed with lipases on neutral films is not specific to lipases, since it was also observed with bovine serum albumin and beta-lactoglobulin A. Lipase activity in the presence of various proteins was investigated with monomolecular films of glycerol didecanoate, either at constant surface area or at constant surface pressure. Depending upon the nature of the lipase and the protein, inhibition of lipase activity was either observed or not. Inhibition was correlated with a decrease in lipase surface concentration. The ability of the various proteins to inhibit lipolysis is: (i) a function of their excess versus lipase in the bulk phase, and: (ii) correlated with their penetration capacity (i.e., the initial rate of surface pressure increase of a glycerol didecanoate monolayer having an initial surface pressure of 20 dyn/cm, after the injection-of the protein). Since lipase inhibition was observed with low surface densities of inhibitory proteins, a long-range effect is probably involved in the mechanism of interfacial lipase inhibition. The nature of the ionic charge added to the monolayer by the protein is not critical for determining lipase adsorption or desorption. It is hypothesized that the lack of lipase adsorption to, or desorption from, the lipid monolayer results from a change in the organization of the hydrocarbon moiety of the lipid.  相似文献   

14.
A canonical flow geometry was utilized for a fundamental study of the coupling between bulk flow and a Newtonian gas-liquid interface in the presence of an insoluble surfactant. We develop a Navier-Stokes numerical model of the flow in the deep-channel surface viscometer geometry, which consists of stationary inner and outer cylinders, a floor rotating at a constant angular velocity, and an interface covered initially by a uniformly distributed surfactant. Here, the floor of the annular channel is rotated fast enough so the flow is nonlinear and drives the film toward the inner cylinder. The boundary conditions at the interface are functions of the surface tension, surface shear viscosity, and surface dilatational viscosity, as described by the Boussinesq-Scriven surface model. A physical surfactant system, namely hemicyanine, an insoluble monolayer on an air-water interface, with measured values of surface tension and surface shear viscosity versus concentration, was used in this study. We find that a surfactant front can form, depending on the Reynolds number and the initial surfactant concentration. The stress balance in the radial direction was found to be dominated by the Marangoni stress, but the azimuthal stress was only due to the surface shear viscosity. Numerical studies are presented comparing results of surfactant-influenced interface cases implementing the derived viscoelastic interfacial stress balance with those using a number of idealized stress balances, as well as a rigid no-slip surface, providing added insight into the altered dynamics that result from the presence of a surfactant monolayer. Copyright 2000 Academic Press.  相似文献   

15.
A thermodynamic study on the interaction of myelin basic protein with mercury ion was studied by using isothermal titration calonmetry,ITC,at 300.15,310.15 and 320.15 K in Tris buffer solution at pH 7.The enthalpies of MBP + Hg2+ interaction are reported and analysed in terms of the extended solvation model.It was found that MBP has two identical and non-cooperative binding sites for Hg2+ ions.The intrinsic dissociation equilibrium constants are 99.904,112.968 and 126.724μmol/L,and the molar enthalpy of binding are -11.634,-10.768 and -10.117kJ mol-1 at 300.15,310.15 and 320.15 K,respectively.  相似文献   

16.
Surface shear viscosity of food emulsifiers may contribute appreciably to the long-term stability of food dispersions (emulsions and foams). In this work we have analyzed the structural, topographical, and shear characteristics of a whey protein isolate (WPI) and monoglyceride (monopalmitin and monoolein) mixed films spread on the air-water interface at pH 7 and at 20 degrees C. The surface shear viscosity (etas) depend on the surface pressure and on the composition of the mixed film. The surface shear viscosity varies greatly with the surface pressure. In general, the greater the surface pressure, the greater are the values of etas. The values of etas for the mixed WPI-monoolein monolayer were more than one order of magnitude lower than those for a WPI-monopalmitin mixed film, especially at the higher surface pressures. At higher surface pressures, collapsed WPI residues may be displaced from the interface by monoglyceride molecules with important repercussions on the shear characteristics of the mixed films. A shear-induced change in the topography and a segregation between domains of the film forming components were also observed. The displacement of the WPI by the monoglycerides is facilitates under shear conditions, especially for WPI-monoolein mixed films.  相似文献   

17.
Influence of interfacial rheology on foam and emulsion properties   总被引:4,自引:0,他引:4  
Foams and emulsions are stabilized by surfactant monolayers that adsorb at the air-water and oil-water interfaces, respectively. As a result of monolayer adsorption, the interfaces become viscoelastic. We will describe experiments showing that foaming, emulsification, foam and emulsion stability, are strongly dependent upon the value of compression elasticity and viscosity. This will include excited surface wave devices for the measurement of surface viscoelasticity and thin film videointerferometry for the study of model films between air bubbles and emulsion drops.  相似文献   

18.
The changes in the secondary conformation and surface hydrophobicity of beta-lactoglobulin subjected to different thermal treatments were characterized at pH values of 7, 5.5 and 4 using circular dichroism (CD) and hydrophobic dye binding. Heating resulted in a decrease in alpha-helix content with a corresponding increase in random coil at all pH values, this change being more pronounced for small heating times. Heating also resulted in an increase in surface hydrophobicity as a result of partial denaturation, this increase being more pronounced at pH 4. Thermal treatment resulted in a shift of the spread monolayer isotherm at air-water interface to smaller area per molecule due to increased flexibility and more loop formation. Thermal treatment led to an increase in interfacial shear elasticity and viscosity of adsorbed beta-lactoglobulin layer at pH 5.5 and 7. Interfacial shear elasticity, shear viscosity, stability of beta-lactoglobulin stabilized emulsion and average coalescence time of a single droplet at a planar oil-water interface with adsorbed protein layer exhibited a maximum for protein subjected to 15 min heat treatment at pH 7. At pH 5.5, the interfacial shear rheological properties and average single drop coalescence time were maximum for 15 min heat treatment whereas emulsion stability was maximum for 5 min heat treatment. At pH 7, thermal treatment was found to enhance foam stability. Analysis of thin film drainage indicated that interfacial shear rheological properties do not influence thin film drainage.  相似文献   

19.
The structural and shear characteristics of mixed monolayers formed by an adsorbed Na-caseinate film and a spread monoglyceride (monopalmitin or monoolein) on the previously adsorbed protein film have been analyzed. Measurements of the surface pressure (pi)-area (A) isotherm and surface shear viscosity (eta(s)) were obtained at 20 degrees C and at pH 7 in a modified Wilhelmy-type film balance. The structural and shear characteristics of the mixed films depend on the surface pressure and on the composition of the mixed film. At surface pressures lower than the equilibrium surface pressure of Na-caseinate (at pipi(e)(CS) have important repercussions on the shear characteristics of the mixed films.  相似文献   

20.
In this contribution we are concerned with the study of structure, topography, and surface rheological characteristics under shear conditions of monoglyceride (monopalmitin and monoolein) and milk protein (beta-casein, kappa-casein, caseinate, and WPI) spread monolayers at the air-water interface. Combined surface chemistry (surface film balance and surface shear rheometry) and microscopy (Brewster angle microscopy: BAM) techniques have been applied in this study to pure emulsifiers (proteins and monoglycerides) spread at the air-water interface. To study the shear characteristics of spread films, a homemade canal viscometer was used. The experiments have demonstrated the sensitivity of the surface shear viscosity (eta(s)) of protein and monoglyceride films at the air-water interface, as a function of surface pressure (or surface density). The surface shear viscosity was higher for proteins than for monoglycerides. In addition, eta(s) was higher for the globular WPI than for disordered beta-casein and caseinate due to the strong forces acting on spread globular proteins. This technique makes it possible to distinguish between beta-casein and caseinate spread films, with the higher eta(s) values for the later due to the presence of kappa-casein. The eta(s) value varies greatly with the surface pressure (or surface density). In general, the greater the surface pressure, the greater the values of eta(s). Finally, the eta(s) value is also sensitive to the monolayer structure, as was observed for monoglycerides with a rich structural polymorphism (i.e., monopalmitin).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号