首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BACKGROUND: Ecteinascidin 743 (Et 743), a natural product derived from a marine tunicate, is a potent antitumor agent presently in phase II clinical trials. Et 743 binds in the minor groove of DNA and alkylates N2 of guanine via a unique mechanism involving catalytic activation. The sequence selectivity of Et 743 is governed by different patterns of hydrogen-bonding to DNA, which results in differential reversibility of the covalent adducts. As determined by nuclear magnetic resonance spectroscopy, the preferred sequences 5'-PuGC and 5'-PyGG are stabilized by a hydrogen-bonding network, while the non-preferred sequences 5'-NG(A/T) are much less stabilized due to the lack of a key hydrogen bond to the GC base pair on the 3'-side of the alkylated guanine. RESULTS: Mammalian cell lines (XPB, XPD, XPF, XPG, and ERCC1) deficient in the nucleotide excision repair (NER) gene products show resistance to Et 743. The recognition and subsequent incision of Et 743-DNA adducts by the bacterial multisubunit endonuclease UvrABC were used to evaluate DNA repair-mediated toxicity as a rationale for the resistance of NER-defective cell lines and the antitumor activity of Et 743. The Et 743-DNA adducts are indeed recognized and incised by the UvrABC repair proteins; however, the pattern of incision indicated that the non-preferred, and less stable, sequences (i.e. 5'-NG(A/T)) modified with Et 743 are generally incised at a much higher efficiency than the preferred, more stable sequences (i.e. 5'-PuGC or 5'-PyGG). In addition, within the same Et 743 recognition sequence, the level of incision varies, indicating that flanking regions also contribute to the differential incision frequency. CONCLUSIONS: The inefficient repair incision by the UvrABC nuclease of Et 743-DNA adducts provides a basis for rationalizing the observed repair-dependent cytotoxicities of these DNA adducts, if other associated structural properties of Et 743-DNA adducts are taken into account. In particular, the wedge-shaped Et 743, which forces open the minor groove of DNA, introducing a major groove bend, and the extrahelical protrusion of the C-subunit of Et 743 provide unique characteristics alongside the hydrogen-bonding stabilization of a covalent DNA adduct, which we propose traps an intermediate in NER processing of Et 743-DNA adducts. This trapped intermediate protein-Et 743-DNA adduct complex can be considered analogous to a poisoned topoisomerase I- or topoisomerase II-DNA complex. In the absence of an intact NER nuclease complex, this toxic lesion is unable to form, and the Et 743-DNA adducts, although not repaired by the NER pathway, are less toxic to cells. Conversely, elevated levels of either of these nucleases should lead to enhanced Et 743 toxicity.  相似文献   

2.
REPAIR OF UV-DAMAGED INCOMING PLASMID DNA IN Saccharomyces cerevisiae   总被引:2,自引:0,他引:2  
A whole-cell transformation assay was used for the repair of UV-damaged plasmid DNA in highly transformable haploid strains of Saccharomyces cerevisiae having different repair capabilities. Six rad alleles were selected from the three epistasis groups: rad 1-1 and rad2-1 from the RAD3 group, rad6-1 and rad18-2 from the RAD6 group, and rad52-1 and rad54-1 from the RAD52 group. Cells carrying single, double and triple rad alleles were transformed to uracil prototrophy by centromeric plasmid DNA (YCp19) modified in vitro with UV (254 nm). Surviving fractions were calculated as the number of transformants at each fluence relative to the number of transformants with unirradiated plasmid DNA. The sensitivity of incoming DNA in single rad mutants shows that most repair is carried out by excision repair and a RAD18-dependent process. In the rad52-1 host, the sensitivity of incoming DNA was intermediate between those found in RAD+ and rad2-1 hosts, suggesting the involvement of a recombinational repair process. Non-epistatic interactions were observed between rad alleles belonging to different epistasis groups. This provides validation for the classification of the three epistasis groups concerning the repair of chromosomal DNA for UV-incoming DNA. In both rad1-1 rad6-1 and rad1-1 rad18-2 rad54-1 hosts, the mean fluence for one lethal event corresponds approximately to one pyrimidine dimer per plasmid molecule, indicating that they are absolute repairless hosts for incoming DNA. A comparison between cell and plasmid survival reveals that there are differences in the repairability of both chromosomal and incoming DNA. The large effect of rad6-1 mutation on cell survival and the small effect on incoming DNA suggest that, in the RAD+ strain, the RAD6 product may be essential for the repair processes which act on chromosomal DNA, but not for those which act on incoming DNA. It is proposed that in yeasts postreplication repair of incoming DNA is limited to supercoiled molecules with 1-2 pyrimidine dimers that can initiate replication.  相似文献   

3.
The p53 tumor suppressor has long been envisaged to preserve genetic stability by the induction of cell cycle checkpoints and apoptosis. More recently, p53 has been implicated to play roles in DNA repair responses to genotoxic stresses. UV-damage and the damage caused by certain chemotherapeutics including cisplatin and nitrogen mustards are known to be repaired by the nucleotide excision repair (NER) pathway which is reportedly regulated by p53 and its downstream genes. There are evidences to suggest that the base excision repair (BER) induced by the base-damaging agent methyl methanesulfonate (MMS) is partially deficient in cells lacking functional p53. This result suggests that the activity of BER might be also dependent on the p53 status. In this review, we discuss the possibilities that p53 regulates BER as well as NER; these are one of the most significant potentials of p53 tumor suppressor for repairing the vast majority of DNA damages that is incurred from various environmental stresses.  相似文献   

4.
Base excision repair (BER) is the major mechanism for the correction of damaged nucleobases resulting from the alkylation and oxidation of DNA. The first step in the BER pathway consists of excision of the abnormal base by several specific DNA N-glycosylases. A decrease in BER activity was found to be related to an increased risk of carcinogenesis and aging. To investigate BER activities we set up a new device for DNA repair analysis based on surface plasmon resonance imaging (SPRi). Oligonucleotides bearing an abnormal nucleoside, namely 8-oxo-7,8-dihydro-2'-deoxyguanosine and (5'S)-5',8-cyclopurine-2'-deoxynucleoside, were grafted by a pyrrole electro-copolymerization process on a glass prism coated with a gold layer. The latter label-free DNA sensor chip permits the detection of N-glycosylase/AP-lyase activity as well as the binding of repair proteins to DNA damage without cleavage activity. Thus, the Fapy DNA N-glycosylase (Fpg) protein is shown as expected to bind and then cleave its natural substrate, namely 8-oxo-7,8-dihydro-guanine, together with the resulting abasic site. Using the current SPR imaging-based DNA array we observed an original binding activity of Fpg towards the (5'S)-5',8-cyclodAdenosine residue. These results altogether show that SPR imaging may be used to simultaneously and specifically detect recognition and excision of several damaged DNA nucleobases, and constitutes an interesting technique to screen inhibitors of DNA repair proteins.  相似文献   

5.
Conjugates 12S and 12R of N-methylpyrrole (Py)-N-methylimidazole (Im) seven-ringed hairpin polyamide with both enantiomers of 1,2,9,9a-tetrahydrocyclopropa[1,2-c]benz[1,2-e]indol-4-one (CBI) were synthesized, and their DNA alkylating activity was examined. High-resolution denaturing gel electrophoresis revealed that 12S selectively and efficiently alkylated at one match sequence, 5'-TGACCA-3', in 450-bp DNA fragments. The selectivity and efficiency of the DNA alkylation by 12S were higher than those of the corresponding cyclopropapyrroloindole (CPI) conjugate, 11. In sharp contrast, another enantiomer, 12R, showed very weak DNA alkylating activity. Product analysis of the synthetic decanucleotide confirmed that the alkylating activity of 12S was comparable with 11 and that 12S had a significantly higher reactivity than 12R. The enantioselective reactivity of 12S and 12R is assumed to be due to the location of the alkylating cyclopropane ring of the CBI unit in the minor groove of the DNA duplex. Since the CBI unit can be synthesized from commercially available 1,3-naphthalenediol, the present results open up the possibility of large-scale synthesis of alkylating Py-Im polyamides for facilitating their use in future animal studies.  相似文献   

6.
Abstract— In Saccharomyces cerevisiae, a re-irradiation with a saturing dose of UVA after pretreatment with 8-methoxypsoralen (8-MOP) plus low doses of UVA and removal of unbound 8-MOP lead to an increase in frequency of forward mutants in strains defective in the excision (radl-3, radl-Δ, rad2-6) or in the recombinational (rad52-l) repair pathways. Such an enhancement attributable to DNA interstrand cross-links was not observed in mutants blocked in a mutagenic repair pathway (rad6-Δ and pso2-l). These results are interpreted as revealing the existence of an alternative pathway to excision of DNA cross-links. This pathway appears to be error-prone and independent from the recombinational pathway. The RAD6 or the PSO2 gene products are likely to interfere with this process.  相似文献   

7.
BACKGROUND: Cisplatin is a DNA-damaging drug used for treatment of testicular tumors. The toxicity of cisplatin probably results from its ability to form DNA adducts that inhibit polymerases. Blocked replication represents a particular challenge for tumor cells, which are committed to unremitting division. Recombination provides a mechanism by which replication can proceed despite the presence of lesions and therefore could be significant for managing cisplatin toxicity. RESULTS: Recombination-deficient Escherichia coli mutants were strikingly sensitive to cisplatin when compared with the parental strain. Our data identified both daughter-strand gap and double-strand break recombination pathways as critical for survival following treatment with cisplatin. Although it is established that nucleotide excision repair (NER) significantly protects against cisplatin toxicity, most recombination-deficient strains were as sensitive to the drug as the NER-deficient uvrA mutant. Recombination/NER deficient double mutants were more sensitive to cisplatin than the corresponding single mutants, suggesting that recombination and NER pathways play independent roles in countering cisplatin toxicity. Cisplatin was a potent recombinogen in comparison with the trans isomer and canonical alkylating agents. Mitomycin C, which like cisplatin, forms DNA cross-links, was also recombinogenic at minimally toxic doses. CONCLUSIONS: We have demonstrated that all of the major recombination pathways are critical for E. coli survival following treatment with cisplatin. Moreover, recombination pathways act independently of NER and are of equal importance to NER as genoprotective systems against cisplatin toxicity. Taken together, these results shed new light on how cells survive and succumb to this widely used anticancer drug.  相似文献   

8.
DNA integrity is constantly threatened by endogenous and exogenous agents that can modify its physical and chemical structure. Changes in DNA sequence can cause mutations sparked by some genetic diseases or cancers. Organisms have developed efficient defense mechanisms able to specifically repair each kind of lesion (alkylation, oxidation, single or double strand break, mismatch, etc). Here we report the adjustment of an original assay to detect enzymes’ activity of base excision repair (BER), that supports a set of lesions including abasic sites, alkylation, oxidation or deamination products of bases. The biosensor is characterized by a set of fluorescent hairpin-shaped nucleic acid probes supported on magnetic beads, each containing a selective lesion targeting a specific BER enzyme. We have studied the DNA glycosylase alkyl-adenine glycosylase (AAG) and the human AP-endonuclease (APE1) by incorporating within the DNA probe a hypoxanthine lesion or an abasic site analog (tetrahydrofuran), respectively. Enzymatic repair activity induces the formation of a nick in the damaged strand, leading to probe's break, that is detected in the supernatant by fluorescence. The functional assay allows the measurement of DNA repair activities from purified enzymes or in cell-free extracts in a fast, specific, quantitative and sensitive way, using only 1 pmol of probe for a test. We recorded a detection limit of 1 μg mL−1 and 50 μg mL−1 of HeLa nuclear extracts for APE1 and AAG enzymes, respectively. Finally, the on-bead assay should be useful to screen inhibitors of DNA repair activities.  相似文献   

9.
BACKGROUND: Pyrrole-imidazole polyamides are synthetic ligands that recognize predetermined sequences in the minor groove of DNA with affinities and specificities comparable to those of DNA-binding proteins. As a result of their DNA-binding properties, polyamides could deliver reactive moieties for covalent reaction at specific DNA sequences and thereby inhibit DNA-protein interactions. Site-specific alkylation of DNA could be a useful tool for regulating gene expression. As a minimal first step, we set out to design and synthesize a class of hairpin polyamides equipped with DNA alkylating agents and characterize the specificity and yield of covalent modification. RESULTS: Bis(dichloroethylamino)benzene derivatives of the well-characterized chlorambucil (CHL) were attached to the gamma turn of an eight-ring hairpin polyamide targeted to the HIV-1 promoter. We found that a hairpin polyamide-CHL conjugate binds and selectively alkylates predetermined sites in the HIV promoter at subnanomolar concentrations. Cleavage sites were determined on both strands of a restriction fragment containing the HIV-1 promoter, revealing good specificity and a high yield of alkylation. CONCLUSIONS: The ability of polyamide-CHL conjugates to sequence specifically alkylate double-stranded DNA in high yield and at low concentrations sets the stage for testing their use as regulators of gene expression in cell culture and ultimately in complex organisms.  相似文献   

10.
Acid hydrolysis of purified DNA extracted from cells of a haploid repair-proficient (RAD) yeast strain that had been treated with 8-MOP + UVA revealed the existence of two major and one minor thymine photoproduct. At survival levels of the RAD strain between 100% and 1% furanside monoadducts constituted the major DNA lesion, followed by diadducts that, at the lowest survival level, nearly reached 50% of the thymine photoproducts; pyrone-side monoadducts were only detectable at the highest UVA exposure dose applied and clearly constitute a minority photoproduct. The number of induced diadducts was verified by determination of interstrand cross-links via denaturation and renaturation of 8-MOP + UVA-treated DNA from RAD and rad2 yeast strain. 8-MOP + UVA was shown to induce two types of locus-specific mutations: reversion of the lys1-1 ochre allele was between 20- to 50-fold higher than that of the his4-38 frameshift allele. Mutant yield for the lys 1-1 reversion was the same in RAD and excision repair-deficient rad2-20 strains whereas frameshift mutagenesis was about eightfold higher in the rad2-20 background.  相似文献   

11.
Tandem N‐methylpyrrole? N‐methylimidazole (Py? Im) polyamides with good sequence‐specific DNA‐alkylating activities have been designed and synthesized. Three alkylating tandem Py? Im polyamides with different linkers, which each contained the same moiety for the recognition of a 10 bp DNA sequence, were evaluated for their reactivity and selectivity by DNA alkylation, using high‐resolution denaturing gel electrophoresis. All three conjugates displayed high reactivities for the target sequence. In particular, polyamide 1 , which contained a β‐alanine linker, displayed the most‐selective sequence‐specific alkylation towards the target 10 bp DNA sequence. The tandem Py? Im polyamide conjugates displayed greater sequence‐specific DNA alkylation than conventional hairpin Py? Im polyamide conjugates ( 4 and 5 ). For further research, the design of tandem Py? Im polyamide conjugates could play an important role in targeting specific gene sequences.  相似文献   

12.
The induction and repair of different types of photodamage and photogenotoxicity in eukaryotic cells have been the subject of many studies. Little is known about possible links between these phenomena and the induction of DNA damage-inducible genes. We explored this relationship using the yeast Saccharomyces cerevisiae, a pertinent eukaryotic model. Previous results showed that the photogenotoxic potential of 8-methoxypsoralen (8-MOP) plus UVA is higher than that of UV (254 nm). Moreover, the induction of the ribonucleotide reductase gene RNR2 by UV and 8-MOP plus UVA in an RNR2-LACZ fusion strain and the formation of DNA double-strand breaks (dsb) as repair intermediates after such treatments suggest that the latter process could involve a signal for gene induction. To further substantiate this, we measured the induction of the DNA repair gene RAD51 in RAD51-LACZ fusion strains using the dsb repair and recombination deficient mutant rad52 and the corresponding wild type, and we determined the formation of dsb by pulsed-field gel electrophoresis. After treatments, the resealing of dsb formed as repair intermediates was impaired in the rad52 mutant. At equal doses, i.e. the same number of lesions, the induction of the RAD51 gene by UV or 8-MOP plus UVA was significantly reduced in the rad52 mutant as compared with the wild type. The same was true when equitoxic doses were used. Thus, the RAD52 repair pathway appears to play an important role not only in dsb repair but also in gene induction. Furthermore, the signaling pathways initiated by DNA damage and its processing are somewhat linked to the photogenotoxic response.  相似文献   

13.
Nucleotide excision repair (NER) of ultraviolet (UV)-induced DNA lesions known as cyclobutane pyrimidine dimer (CPD) and (6–4)-pyrimidine-pyrimidone (6-4PP) photoproducts depends on the activities of multiple anti-UV radiation (RAD) proteins in budding yeast. However, NER remains poorly known in filamentous fungi, whose DNA lesions are photorepaired by one or two photolyases, namely CPD-specific Phr1 and/or 6-4PP-specific Phr2. Previously, the white collar proteins WC1 and WC2 were proven to regulate expressions of phr2 and phr1 and photorepair 6-4PP and CDP DNA lesions, respectively, in Metarhizium robertsii, a filamentous entomopathogenic-phytoendophytic fungus. We report here high activities of orthologous Rad1 and Rad10 in 5-h photoreactivation of UVB-injured or UVB-inactivated conidia but a severely compromised capability of their reactivating those conidia via 24-h dark incubation in M. robertsii. The null mutants of rad1 and rad10 were much more compromised in conidial UVB resistance and photoreactivation capability than the previous null mutants of phr1, phr2, wc1 and wc2. Multiple protein–protein (Rad1-Rad10, Rad1-WC2, Rad10-Phr1, WC1-Phr1/2 and WC2-Phr1/2) interactions detected suggest direct/indirect links of Rad1 and Rad10 to Phr1/2 and WC1/2 and an importance of the links for their photoreactivation activities. Conclusively, Rad1 and Rad10 photoreactivate UVB-impaired M. robertsii through their interactions with the DNA photorepair-required proteins.  相似文献   

14.
Mitomycin C, (MC), an antitumor drug used in the clinics, is a DNA alkylating agent. Inert in its native form, MC is reduced to reactive mitosenes in cellulo which undergo nucleophilic attack by DNA bases to form monoadducts as well as interstrand crosslinks (ICLs). These properties constitute the molecular basis for the cytotoxic effects of the drug. The mechanism of DNA alkylation by mitomycins has been studied for the past 30 years and, until recently, the consensus was that drugs of the mitomycins family mainly target CpG sequences in DNA. However, that paradigm was recently challenged. Here, we relate the latest research on both MC and dicarbamoylmitomycin C (DMC), a synthetic derivative of MC which has been used to investigate the regioselectivity of mitomycins DNA alkylation as well as the relationship between mitomycins reductive activation pathways and DNA adducts stereochemical configuration. We also review the different synthetic routes to access mitomycins nucleoside adducts and oligonucleotides containing MC/DMC DNA adducts located at a single position. Finally, we briefly describe the DNA structural modifications induced by MC and DMC adducts and how site specifically modified oligonucleotides have been used to elucidate the role each adduct plays in the drugs cytotoxicity.  相似文献   

15.
Heterocyclic aromatic amines react with purine bases and result in bulky DNA adducts that cause mutations. Such structurally diverse lesions are substrates for the nucleotide excision repair (NER). It is thought that the NER machinery recognises and verifies distorted DNA conformations, also involving the xeroderma pigmentosum group A and C proteins (XPA, XPC) that act as a scaffold between the DNA substrate and several other NER proteins. Here we present the synthesis of DNA molecules containing the polycyclic, aromatic amine C8‐guanine lesions acetylaminophenyl, acetylaminonaphthyl, acetylaminoanthryl, and acetylaminopyrenyl, as well as their crystal structures in complex with the yeast XPA homologue Rad14. This work further substantiates the indirect lesion‐detection mechanism employed by the NER system that recognises destabilised and deformable DNA structures.  相似文献   

16.
Dinuclear azole-bridged Pt compounds bind to DNA helices, forming intrastrand crosslinks between adjacent guanines in a similar way to cisplatin. Their cytotoxic profile is, however, different from that of first and second generation Pt drugs in that they lack cross resistance in cisplatin-resistant cell lines. In contrast to cisplatin, which induces a large kink in DNA duplex, structural NMR studies and molecular dynamics simulations have shown that azole-bridged diplatinum compounds induce only small structural changes in double-stranded DNA. These structural differences have been invoked to explain the different cytotoxic profile of these compounds. Here, we show that in addition to the small structural changes in DNA, dinuclear Pt compounds also affect DNA minor groove flexibility in a different way than cisplatin. Free-energy calculations on azole-bridged diplatinum DNA adducts reveal that opening of the minor groove requires a higher free-energy cost (DeltaG ~ 7-15 kcal/mol) than in the corresponding cisplatin-DNA adduct (DeltaG ~ 0 kcal/mol). This could prevent minor groove binding proteins from binding to diplatinum-DNA adducts thus leading to a different cellular response than cisplatin and possibly decreasing the activity of excision repair enzymes. Although the development of drug resistance is a highly complex mechanism, our findings provide an additional rationale for the improved cytotoxic activity of these compounds in cell lines resistant to cisplatin.  相似文献   

17.
In eukaryotic cells helix‐distorting DNA lesions like cyclobutane pyrimidine dimers (CPDs) and 6–4 pyrimidine‐pyrimidone photoproducts (6–4 PPs) are efficiently removed by nucleotide excision repair (NER). NER is a multistep process where in the end, subsequent to replication over the gap, the remaining nick is sealed by a DNA ligase. Lig1 has been implicated as the major DNA ligase in NER. Recently, Lig3 has been implicated as a component of a NER subpathway that operates in dividing cells, but which becomes particularly important in nondividing cells. Here, we use DT40 cells and powerful gene targeting approaches for generating DNA ligase mutants to examine the involvement and contribution of Lig1 and Lig3 in NER using cell survival measured by colony formation, and repair kinetics of CPD by immunofluorescence microscopy and immuno‐slot‐blotting. Our results demonstrate an impressive and previously undocumented potential of Lig3 to substitute for Lig1 in removing helix‐distorting DNA lesions by NER in proliferating cells. We show for the first time in a clean genetic background a functional redundancy in NER between Lig1 and Lig3, which appears to be cell cycle independent and which is likely to contribute to the stability of vertebrate genomes.  相似文献   

18.
Base eversion is a fundamental process in the biochemistry of nucleic acids, allowing proteins engaged in DNA repair and epigenetic modifications to access target bases in DNA. Crystal structures reveal end points of these processes, but not the pathways involved in the dynamic process of base recognition. To elucidate the pathway taken by 8-oxoguanine during base excision repair by Fpg, we calculated free energy surfaces during eversion of the damaged base through the major and minor grooves. The minor groove pathway and free energy barrier (6-7 kcal/mol) are consistent with previously reported results (Qi, Y.; Spong, M. C.; Nam, K.; Banerjee, A.; Jiralerspong, S.; Karplus, M.; Verdine, G. L. Nature 2009, 462, 762.) However, eversion of 8-oxoG through the major groove encounters a significantly lower barrier (3-4 kcal/mol) more consistent with experimentally determined rates of enzymatic sliding during lesion search (Blainey, P. C.; van Oijent, A. M.; Banerjee, A.; Verdine, G. L.; Xie, X. S. Proc. Natl. Acad. Sci. U.S.A. 2006, 103, 5752.). Major groove eversion has been suggested for other glycosylases, suggesting that in addition to function, dynamics of base eversion may also be conserved.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号