首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
以过硫酸铵为引发剂通过一步溶液聚合制备了由化学交联的聚丙烯酰胺(PAM)与聚乙烯吡咯烷酮(PVP)贯穿形成的PAM/PVP半互穿网络(semi-IPN)凝胶,着重研究了凝胶的机械性能。红外光谱、热重分析及拉伸实验分析可知PAM与PVP之间存在氢键作用。拉伸实验表明:在PAM中引入PVP,凝胶拉伸强度明显提高,m(PVP)/m(AM)=7.51%时制备的PAM/PVP semi-IPN凝胶拉伸强度比单纯化学交联的PAM增大64.67%;当AM=6mol/L,n(MBA)/n(AM)=1.67×10-4,m(PVP)/m(AM)=7.51%时,制备的凝胶机械性能较好,拉伸强度达到1.84MPa,断裂伸长率可达3322%;随着含水率增加,凝胶拉伸强度及断裂伸长率均有所降低。  相似文献   

2.
采用泡沫分散聚合法,以饱和Na2CO3水溶液为发泡剂,过硫酸铵(APS)及NaHSO3为引发剂,N,N′-亚甲基双丙烯酰胺(MBA)为交联剂,聚(氧化乙烯/氧化丙烯)(PF127)为泡沫稳定剂,丙烯酸(AA)和丙烯酰胺(AM)为单体,聚乙烯醇(PVA)为第二网络,制备超大孔半互穿水凝胶P(AA-co-AM)/PVA,并研究其对阳离子兰染料的吸附性能。研究表明,P(AA-co-AM)/PVA具有相互贯穿的超大孔结构;当n(AM):n(AA)=1.5:1,w(PVA)=1.6%时凝胶的平衡溶胀度达186.56g/g;凝胶具有很好的离子响应性,在蒸馏水中的平衡溶胀度为129.16g/g时,在0.1mol/L NaCl溶液中只有31.07g/g;对阳离子兰染料溶液的脱色率达92.17%,吸附容量达17.16mg/g。  相似文献   

3.
大孔PAMPS/PVA半互穿网络型水凝胶的制备及其性能研究   总被引:1,自引:0,他引:1  
袁丛辉  林松柏  柯爱茹  刘博  全志龙 《化学学报》2009,67(16):1929-1935
以PEG6000为成孔剂, 合成了大孔聚(2-丙烯酰胺-2-甲基丙磺酸)/聚乙烯醇半互穿网络型(s-IPN)水凝胶. 红外分析表明, PVA与PAMPS之间形成了较强的氢键, 使得PVA分子上的C—O伸缩振动吸收峰移向了低波数处. X射线衍射分析发现, 当PVA用量较高时, 由于部分的PVA结晶, 使得凝胶的半互穿网络结构不均匀. 电镜分析结果表明, 没有使用成孔剂的凝胶表面成褶皱形, 不存在任何孔洞结构; 而以PEG6000为成孔剂的凝胶表面存在相互贯穿的大孔结构. 研究了该水凝胶的溶胀性能, 结果表明, 该水凝胶的平衡溶胀度在116至320之间; 而成孔剂PEG6000的加入能较大幅度提高凝胶的溶胀速率, 凝胶在240 min之内就能达到溶胀平衡. 对凝胶抗压缩性能的研究表明, 当PVA用量为9.1% (w)时, 凝胶的抗压缩强度最大, 可达12.0 MPa; 而成孔剂的加入会在一定程度削弱凝胶的抗压缩强度. 该凝胶具有较好的电场敏感性, 研究发现, 将吸去离子水达到溶胀平衡的凝胶放入施加有电场的0.2 mol•L-1 NaCl溶液中时, 凝胶迅速偏向阳极. 而PVA和成孔剂PGE6000的用量均对凝胶的偏转速度以及最大偏转角存在较大的影响.  相似文献   

4.
以4-乙酰基丙烯酰乙酸乙酯(AAEA)、2-丙烯酰胺基-2-甲基-1-丙磺酸(AMPS)为单体,不同分子量的聚乙二醇(PEG)为成孔剂,通过自由基溶液聚合法,合成了新型多孔快速响应电场敏感性水凝胶.结果表明,成孔剂PEG被洗脱后在凝胶内部形成了互相贯穿的孔洞结构,孔径在30~120μm之间.以PEG6000为成孔剂致孔后的多孔凝胶溶胀速率和消溶胀速率最快,在去离子水中30s达到溶胀平衡,在0.1mol/L的NaCl溶液中40min达到消溶胀平衡;电场作用下凝胶的消溶胀速度大大加快,12min内即可达到平衡.凝胶中AMPS含量的增多会加快凝胶在电场中的响应速度;而高温下,随着AAEA含量的增加,凝胶内部疏水基团增多并收缩产生大量的疏水微区,限制了凝胶内部水分的持续排出,因此n(AAEA)∶n(AMPS)=3∶1的凝胶4min内即可排出表面水分达到消溶胀平衡,可保水率却高达75%.同时,增大电解液的pH值、浓度以及提高电解电压,均会加快凝胶的消溶胀行为.  相似文献   

5.
以2-丙烯酰胺基-2-甲基丙磺酸(AMPS)、N,N-二甲基丙烯酰胺(DMAA)为单体,通过水溶液聚合法制备P(AMPS-co-DMAA)凝胶。用红外光谱(FT-IR)和扫描电子显微镜(SEM)等对凝胶的结构进行表征。研究单体配比、交联剂用量、AgNO_3初始浓度对Ag~+吸附性能的影响,结果表明,当n(DMAA):n(AMPS)=4:1,交联剂用量为1.6%,AgNO_3浓度为0.03mol/L时,凝胶最大吸附容量为240mg/g。同时探讨凝胶的吸附动力学,结果表明,准二级动力学模型符合凝胶的吸附动力学,内扩散不是控制吸附过程的唯一步骤。  相似文献   

6.
高强度PAMPS-PAAm互穿网络凝胶及其溶胀性能   总被引:1,自引:0,他引:1  
通过考察不同单体浓度或离子强度下凝胶的力学性能和溶胀特性,对聚2-丙烯酰胺-2-甲基丙磺酸(PAMPS)与聚丙烯酰胺(PAAm)形成的互穿网络凝胶的高强度性能和作用机理进行了研究.结果表明:PAMPS-PAAm互穿网络凝胶的力学强度对c(AMPS)存在一个最佳值(1 mol/L),且随c(AAM)的增大而显著增大(0.5~4 mol/L).当c(AMPS)=1 mol/L、c(AAM)=4 mol/L时,互穿网络凝胶的最大抗压强度达6.46 MPa;改变凝胶体系内水的离子强度,PAMPS-PAAm凝胶在0.25 mol/kg离子强度时的抗压强度与纯水状态下相比增加了29%.  相似文献   

7.
泡沫聚合法制备超大多孔水凝胶   总被引:1,自引:0,他引:1  
采用泡沫体系分散聚合法,过硫酸铵(APS)及N,N,N′,N′-四甲基乙二胺(TMEDA)为氧化还原引发体系,N,N′-亚甲基双丙烯酰胺(MBA)为交联剂,碳酸钠为发泡剂,聚氧化乙烯-氧化丙稀(PF127)为泡沫稳定剂,用羧甲基纤维素钠(CMC)接枝丙烯酸(AA)和2-丙烯酰胺基-2-甲基丙磺酸(AMPS)合成了CMC-g-(AA-co-AMPS)超大多孔水凝胶。通过FTIR、SEM表征,表明材料是具有超大多孔结构的CMC-g-(AA-co-AMPS)水凝胶。对各影响因素的研究表明,在m(CMC)∶m(AA)∶m(AMPS)为1∶4∶1,w(APS)为0.8%[其中m(APS)∶m(TMEDA)=2∶1],w(Na2CO3)=65%,w(PF127)=0.2%,温度为65℃时,制得的凝胶吸蒸馏水倍率可达1281g/g,吸0.9%盐水倍率达143g/g,10min时已基本达到溶胀平衡。  相似文献   

8.
掺杂镨的纳米二氧化钛光催化降解2,4-二硝基苯酚的研究   总被引:1,自引:0,他引:1  
以钛酸丁酯为原料,用溶胶-凝胶(sol-gel)法制备了掺杂镨的纳米TiO2粉末.采用X光衍射仪对粉体的物相进行了表征.样品经500 ℃焙烧2 h后,0.5%(摩尔分数)Pr3+-TiO2纳米粉末为单一的锐钛型结构.通过粉体对2,4-二硝基苯酚的降解情况对其光催化活性进行了测试,结果表明与纯TiO2相比,Pr3+-TiO2的光催化活性有较大提高,当Pr3+的掺入量为0.5%(摩尔分数)时催化活性最高.以高压汞灯为光源,2,4-二硝基苯酚的初始浓度为50 mg·L-1,催化剂0.5%(摩尔分数)Pr3+-TiO2投加量为1.0 g·L-1时,2,4-二硝基苯酚的光催化降解效果最好.  相似文献   

9.
以2-丙烯酰胺-2-甲基丙磺酸(AMPS)为有机原料,正硅酸乙酯(TEOS)为无机原料,过硫酸钾为引发剂,N,N'-亚甲基双丙烯酰胺为交联剂,通过原位-凝胶水溶液聚合法合成了一系列不同二氧化硅含量和不同聚离子浓度的聚(2-丙烯酰胺-2-甲基丙磺酸)/二氧化硅杂化电场敏感性水凝胶.通过扫描电子显微镜(SEM)表征凝胶的结构,研究水凝胶在去离子水以及氯化钠溶液中的溶胀和消溶胀行为.结果表明,系列凝胶的平衡溶胀度介于224.9至325.6之间,复合凝胶的溶胀速率随TEOS用量的增加而降低;除理想杂化凝胶外,随着聚离子浓度的升高,凝胶在氯化钠溶液中的消溶胀速率逐渐减小.对凝胶的电场敏感性研究表明,当聚离子浓度大于氯化钠溶液浓度时,凝胶进一步溶胀,反之则消溶胀,其中杂化凝胶的再溶胀性能减弱,而消溶胀行为变得更为明显.同时制得的理想杂化凝胶,较纯有机凝胶具有更为理想的力学性能,最大抗压缩强度可达23.4 MPa.  相似文献   

10.
本文以碳酸氢钠(NaHCO_3)为致孔剂制备了海藻酸钠/聚丙烯酸复合水凝胶(G-APCGs),采用扫描电子显微镜(SEM)观察了其形貌。水凝胶(G-APCGs)有清晰的孔洞结构,其结构受到单体和致孔剂投加量影响。进一步研究了丙烯酸(AA)、NaHCO_3投加量对复合水凝胶溶胀性能的影响。结果表明,复合水凝胶具有良好的pH敏感性。当海藻酸钠和AA质量比为1∶1.2时,G-APCGs溶胀度最大,可达209 g·g~(-1),且在6 h内达到溶胀平衡;NaHCO_3加入量为0.16 g时,G-APCGs的溶胀度最大,可达228 g·g~(-1)。G-APCGs负载BSA最大量为0.34 g·g~(-1)。负载BSA后的G-APCGs置于模拟胃液pH=1.2时,10 h内G-APCGs释放了7%的BSA;置于模拟肠液pH=7.5时,近85%的BSA在12 h内从G-APCGs中释放出来。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号